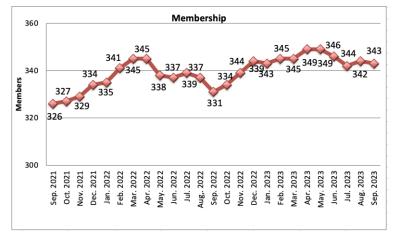


VESA Display Standards Updates

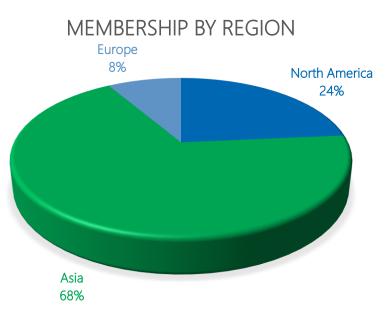
Jim Choate VESA Compliance Program Manager October 10, 2023


Agenda

- VESA Overview and Standards Updates: Jim Choate
- DP Alt Mode v 2.1 Overview and Updates: Tim Wei, Ellisys
- VESA AdaptiveSync Specification Overview and Test: Do Kyun Kim, Seung Hyun Yoo, LGE
- ClearMR Specifications and Compliance Testing Overview: Dr. Yongwoo Yi, Samsung Display
- VESA Compliance Program Updates: Jim Choate
- DP v2.1 Link Layer CTS updates: Sergey Grushin, Unigraf
- Summary, Questions & Answers

About VESA

• A growing global industry alliance with more than 340 members. Strong growth in membership.


Mission to develop, promote and support ecosystem of vendors and certified interoperable products for the electronics industry.

Develops OPEN standards, contribution is open to all companies at all stages of development

 Leading PC/computer, display, hardware, software, and component manufacturers worldwide

• VESA membership continues to grow the most in Asia

VESA Local Asian Support Capability

- VESA has long had a dedicated Japan Task Group with charter to promote the development of design tools and reference guides, PlugTests, educational seminars, and other activities for the benefit of VESA member companies, particularly those in Japan.
- **NEW:** VESA has added to its local support to Asia to address growing regional membership needs
- China (Mainland) and Taiwan are the fastest growing areas for VESA's membership.
- Kellen is VESA's Representative for all Chinese speaking areas of Asia
- This partnership will provide members with a communication option in their native language. Kellen will handle membership related activities including, new membership requests, renewals, PlugTest and event support and translation of VESA member messaging, etc.

VESA Standards Enable Many Market Segments...

Gaming consoles and headsets

Smartphones and tablets

Automotive

Digital projectors

Digital signage / kiosks

... As Well as Many Aspects of Display Technology

- DisplayPort
- Embedded DisplayPort (eDP)
- DisplayPort Alt Mode
- DisplayPort Tunneling (USB4 and Thunderbolt)
- DP Automotive Extensions (DP AE)

- Display Stream Compression (DSC)
- VESA Display Codec for Mobile (VDC-M)

Display

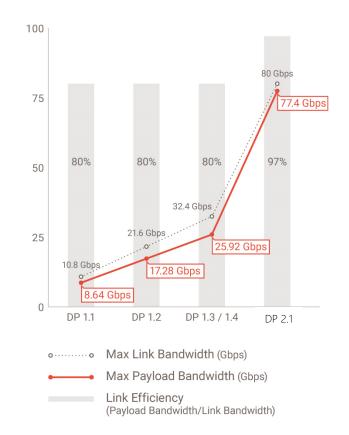
Interfaces

- Standardized Display Performance Measurement
- VESA DisplayHDR Certification (High Dynamic Range)
- VESA ClearMR
- VESA AdaptiveSync

- DisplayID
- Extended Display Identification Data (EDID)
- Multi-Display Interface
- Bulk Display Protocol

DISPLAYPORT[™] 2.1

DisplayPort 2.1 Summary


- DisplayPort v2.1 was released in October 2022
- DisplayPort 2.1 brings DisplayPort into convergence with USB4 PHY specifications to ensure the highest video performance across a broad range of consumer products
- Added DP40 (up to UHBR10) and DP80 (up to UHBR20) cable specifications and certification
- Enhanced DP connectors provide highest performance with full sized DP and mDP connectors

https://vesa.org/featured-articles/vesa-releases-displayport-2-1specification/

- DisplayPort 2.1 enables up to 3X increase in video bandwidth performance
- First standard to support 8K resolution (7680 x 4320) at 60 Hz refresh rate with full-color 4:4:4 resolution, including with 30 bits per pixel (bpp) for HDR-10 support
- Beyond 8K resolutions achieved with maximum link rate to up to 20 Gbps/lane and more efficient 128b/132b channel coding

DisplayPort[™] EVOLUTION OF DISPLAYPORT DATA BANDWIDTH

DisplayPort 2.1 Resolution Capability (Single Display Examples)

Port Configuration	DisplayPort 1.4a	DisplayPort 2.1	
No Compression			
4 Lanes, max link rate	5K (5120x2800)@60fps 24bpp	10K (10240x4320)@60fps 24bpp	
2 Lanes, max link rate	4K (3840x2160)@60fps 24bpp	8K (7680x4320)@30fps 30bpp	
With Compression (DSC)			
4 Lanes, max link rate	8K (7680x4320)@60fps 30bpp	16K (15360x8460)@60fps 30bpp	
2 Lanes, max link rate	5K (5120x2800)@60fps 24bpp	10K (10240x4320)@72fps 30bpp	

Notes:

- 2 Lane configuration is common for USB-C DP Alt Mode
- All above modes assume full 4:4:4 color encoding
- 30bpp is required for DisplayHDR operation

Key:

- DSC = Display Stream Compression
- fps = frames per second
- bpp = bits per pixel

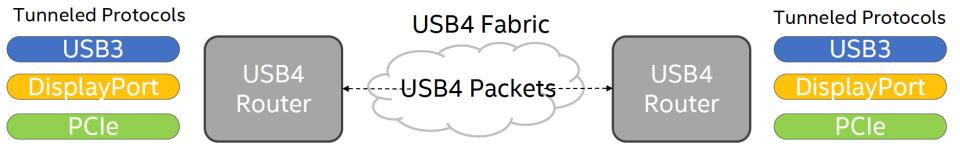
Optimization for Shared Interface Use

- Numerous specification enhancements to simplify the use of DisplayPort as an ingredient in the following interface examples:
 - The USB-C connector, using the DisplayPort Alt Mode (DP Alt Mode)
 - VESA Embedded DisplayPort Standard (eDP)
 - ThunderBolt
 - USB4
 - Wireless interfaces

DP 40/DP 80 Cable Specification and Certification

- Developed as part of DP 2.1 specification update
- DP40 and DP80 Certified cables provide added assurance of smooth operation and full compliance at the UHBR data rates
- Dozens of DP40 and DP80 cables have been certified since launch of program

VESA Technology Development Areas


VESA technology development

- VESA members are collaborating on several key technology areas
- AR/VR Task Group
 - Specification is released. Work started on CTS
 - Focused on creating solutions roadmap to meet performance, power and implementation requirements for future AR/VR needs
- DP Automotive Extension Task Group
 - Working with automotive industry to address needs for high-resolution performance in this market segment
 - Working on DP AE specification and CTS
- Bulk Display Protocol
 - BDP specification and CTS nearing release
- Display Performance Metrics Task Group
 - DisplayHDR, ClearMR, AdaptiveSync

USB4 Overview

- Runs over USB Type-C[®] interconnect
- Tunnels USB3, PCIe and DP protocols
- Signaling rates of 10 or 20 Gbps (10 to 40Gbps aggregated b/w)
- Helps converge USB Type-C connector ecosystem to minimize enduser confusion

DP Alt Mode v 2.1 Overview and Updates

Presented by Tim Wei, Senior Application Engineer, Ellisys

DP Alt Mode v 2.1 Overview and Updates

Tim Wei – Senior Application Engineer, Ellisys

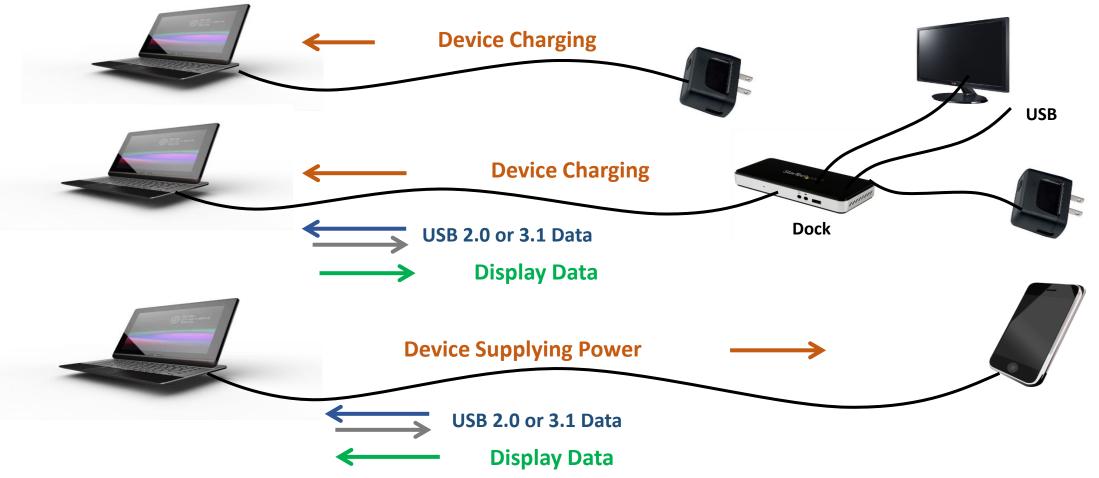
VESA Seoul Workshop October 10, 2023

USB Test and Analysis Solutions

USB Explorer[™] 350

Multi-function USB Type-C[®], USB 3.2, and Power Delivery Protocol Test Platform VESA-Approved Tester for DisplayPort ALT Mode

Protocol and Electrical Analysis Tool for USB Type-C[®] Standards Includes DP AUX and DP ALT Support



Example USB Type-C Configurations

Either end can serve as USB Host, USB-PD Power Consumer, and DisplayPort Video Source (these services are independent of each other

DP Alt Mode over USB-C Ecosystem is Mainstream

USB-C Tablets

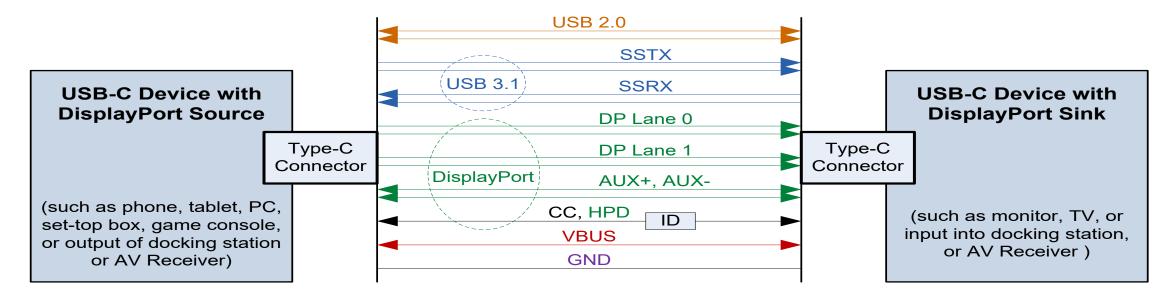
USB-C Laptops

Multi Function Adapters

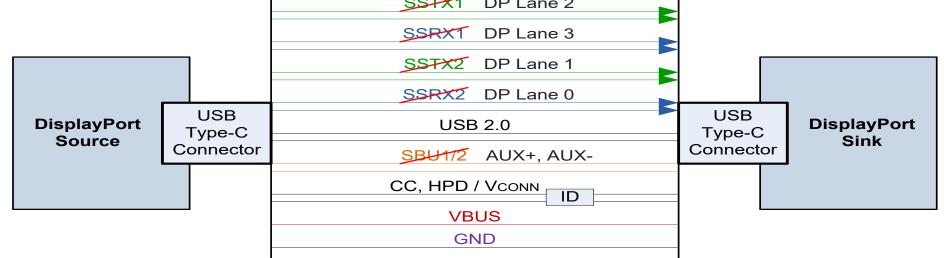
All types of certified adapters available

- C to DP adapters, Multifunction docks
- Type C protocol converters (HDMI, VGA, DVI) using DP Alt Mode

More are certified every week


- Major PC OEMs continue to launch new products with DP Alt Mode over USB-C
- Major Display OEMs continue to add USB-C inputs to their products

USB-C Connector Functional Extension DP Alt Mode


- A passive Full Feature USB Type-C to Type-C cable can carry up to four DisplayPort lanes
 - Same performance and features as a standard DisplayPort connection
 - Allows DisplayPort data rates to increase in the future, since the USB Type-C connector has very high data rate capability
- DisplayPort can be combined with USB 3.2 operation over the same USB Type-C cable
- USB 2.0 and USB Power Delivery is available in all configurations

2xDisplayPort and USB 3.2 over a Standard USB-C Cable

- Uses a standard "Full Feature" USB-C to USB-C cable which is designed to include DisplayPort
- The above configuration uses two high-speed lanes each for DisplayPort and USB 3.2
 - Ideal for docking stations, or for displays or TVs that include USB 3.2 functions

4xDP Over a USB Type-C to USB Type-C Full Feature Passive

- Utilizes optional DP Alt Mode capability of USB Type-C connector
- DisplayPort can use all four high speed lanes to deliver full DisplayPort performance
- The DisplayPort AUX Channel uses the SBU pins
- The DisplayPort HPD / IRQ is transmitted over the CC pin using the USB-PD protocol
- USB 2.0 and USB Power Delivery always available

Typical DisplayPort Alternate Mode Flow

Untitled.ctrt - Ellisys Type-C Tracker Analyzer

USB PD Overview				
Grouping - 120 items displayed				
Item	ρ ∓ τ √	Bit Rate 🗸 🗸	Direct ∨	S . \
BOP' Discover Identity (x 4)		296.718 kbit/s	OUT	ОК
⊕ Source Capabilities (1=Fixed 5V 1.5A)		296.63 kbit/s, 3	OUT	OK
		300.553 kbit/s,	IN	OK
⊕ → PsRdy		296.674 kbit/s,	OUT	OK
DisplayPort Discover Modes > Ack (UFP_D Capable, CD)		296.63 kbit/s, 3	OUT	ОК
🗉 🏓 DisplayPort Discover Modes		296.63 kbit/s, 3	OUT	OK
🗉 🌪 DisplayPort Discover Modes Ack (UFP_D Capable, CD)		300.553 kbit/s,	IN	OK
🖃 🎭 Apple Discover Modes > Ack (0x00000002, 0x00000001)		296.63 kbit/s, 3	OUT	OK
🗉 🏓 Apple Discover Modes		296.63 kbit/s, 3	OUT	OK
⊕ Apple Discover Modes Ack (0x00000002, 0x00000001)		300.481 kbit/s,	IN	OK
□ □ DisplayPort Enter Mode (Mode=1) > Ack		296.648 kbit/s,	OUT	OK
DisplayPort Enter Mode (Mode=1)		296.648 kbit/s,	OUT	OK
🗉 🌜 DisplayPort Enter Mode Ack		300.598 kbit/s,	IN	OK
🖃 🔜 DisplayPort Status Update (DFP_D connected, Not Enabled) > Ack (UFP_D connected, Enabled, HPD Low)		296.648 kbit/s,	OUT	OK
🗉 🏓 DisplayPort Status Update (DFP_D connected, Not Enabled)		296.648 kbit/s,	OUT	OK
🗉 🍬 DisplayPort Status Update Ack (UFP_D connected, Enabled, HPD Low)		300.553 kbit/s,	IN	OK
🖃 🖳 DisplayPort Configure (Set Config as DP Sink, D) > Ack		296.648 kbit/s,	OUT	OK
		296.648 kbit/s,	OUT	OK
🗉 😓 DisplayPort Configure Ack		300.418 kbit/s,	IN	OK

DisplayPort Alternate Mode 2.1 Update

- SVDM Header Update (by USB PD Spec)
- Cable DP Capabilities VDO update to support UHBR20 and UHBR13.5
 - Both passive and active cables
- SOP' Active Cable DisplayPort Configurations VDO update
- **DP Capabilities VDO Update (DPAM Version field)**
- SOP DisplayPort Configurations VDO Update
 - Cable information
 - DPAM Version
- DisplayPort Status Update VDO Update

SVDM Header Update

12:11	Structured VDM Version (Minor) ^a	Version number (Minor) of the SVDM (not the USB PD version number). 00b = Version 2.0 or earlier 01b = Version 2.1 All other values are RESERVED.	
14:13	Structured VDM Version (Major) ^a	Version number (Major) of the SVDM (not the USB PD version number).	
		00b = Version 2.0 or earlier. 01b = Version 2.x. (x indicates SVDM minor version)	
		All other values are RESERVED.	

12:11 was reserved

Cable DP Capabilities VDO update

Table 4-5: SOP' Cable DP Capabilities (VDO in the Responder USB PD Discover Modes

VDM)^a

Bit(s)	Description	Values		
1:0	RESERVED	RESERVED (always 00b).		
5:2	Signaling for	XXX1b = Supports all defined <i>DP</i> bit rates up to HBR3. XX1Xb		
	Transport of DisplayPort	= Supports <i>DP</i> bit rate UHBR10.		
	Protocol ^b	X1XXb = Supports DP bit rate of UHBR20 (e.g., 0111b supports all DP bit rates, including UHBR10 and UHBR20).		
		All other values are RESERVED for higher bit rates. ^c		
7:6	RESERVED	RESERVED (always 00b).		
15:8	DP Source Device	0Ch = Pin Assignments C and D are supported.		
	Pin Assignments	10h = USB-C and DP connector Pin Assignment E is supported.		
	Supported	All other values are RESERVED.		
23:16	DP Sink Device Pin Assignments	0Ch = Pin Assignments C and D are supported (USB-C-to-USB- C cable).		
	Supported	10h = USB-C and DP connector Pin Assignment E is supported.		
		All other values are RESERVED.		
25:24	RESERVED	RESERVED (always 00b).		
26 ^d	UHBR13.5	0 = UHBR13.5 is not supported.		
		1 = UHBR13.5 is supported. ^e		
27	RESERVED	RESERVED (always 0).		
29:28 ^d	Active Component	00b = Passive.		
		01b = Active re-timer. 10b = Active re-driver.		
		11b = Optical.		
31:30	DPAM Version	00b = Version 2.0 or earlier.		
		01b = Version 2.1 or higher.		

Table 4-2: Active Cable DP Capabilities (VDO in the Responder USB PD Discover Modes VDM)

Bit(s)	Description	Values
1:0	RESERVED	RESERVED (always 00b).
5:2	Signaling for Transport of DisplayPort Protocol ^a	XXX1b = Supports DP bit rates and electrical settings (shall always be set apart from diagnostic purposes).
		XX1Xb = RESERVED.
		X1XXb = RESERVED.
		1XXXb = RESERVED.
7:6	RESERVED	RESERVED (always 00b).
15:8	DP Source Device Pin Assignments Supported	0Ch = Pin Assignments C and D are supported. All other values are RESERVED.
23:16	DP Sink Device Pin Assignments Supported	0Ch = Pin Assignments C and D are supported (USB-C-to-USB-C cable). All other values are RESERVED.
31:24	RESERVED	RESERVED (always 00h).

a. "X" value indicates "Don't Care."

 $(\mathbf{0})$

Active Cable DisplayPort Configurations VDO update

Table 4-7: SOP' Active Cable DisplayPort Configurations

Bit(s)	Description	Values
1:0	Select Configuration	00b = Set configuration for USB. ^a 01b = Set configuration for active cable as a DP Source device (UFP_U is a DP Source device). ^b 10b = Set configuration for active cable as a DP Sink device (UFP_U is a DP Sink device). ^b 11b = RESERVED.
5:2	Signaling for Transport of DisplayPort Protocol	 0h = Bit rate is unspecified (used only when the Select Configuration field is programmed for USB Configuration). 1h = Select <i>DP</i> bit rates and electrical settings. All other values are RESERVED.
7:6	RESERVED Configure Active Cable Pin Assignment	RESERVED (always 00b). 00h = Deselect pin assignment. 04h = Select Pin Assignment C. ^c 08h = Select Pin Assignment D. ^d 10h = Select Pin Assignment E. ^e All other values are RESERVED.
31:16	RESERVED	RESERVED (always 0000h).

Table 4-3: Active Cable DisplayPort Status Update

Bit(s)	Description	Values	
2:0	RESERVED	RESERVED (always 00b).	
3	Enabled	0 = Active cable <i>DP</i> functionality is disabled.	
		1 = Active cable <i>DP</i> functionality is enabled and operational.	
31:4	RESERVED	RESERVED (always 0000000h).	
·		7	

DP Capabilities VDO Update

Table 5-6: DP Capabilities (VDO in the Responder USB PD Discover Modes VDM)

Bit(s)	Description	Values ^a
1:0	Port Capability	00b = RESERVED.
		01b = DP Sink Device Capable (including DP Branch device).
		10b = DP Source Device Capable (including DP Branch device).
		11b = Both DP Source and Sink Device Capable.
5:2	Signaling for Transport	XXX1b = Supports <i>DP</i> bit rates and electrical settings (shall always be set
	of DisplayPort Protocol	apart from diagnostic purposes).
		XX1Xb = RESERVED.
		X1XXb = RESERVED.
		1XXXb = RESERVED.
6	Receptacle Indication	0 = DP interface is presented on a USB-C plug.
		1 = DP interface is presented on a USB-C receptacle.
7	USB 2.0 Signaling Not Used	0 = USB 2.0 may be needed on A6 – A7 – or – B6 – B7 while
		in DisplayPort Configuration.
		1 = USB 2.0 is not needed on A6 – A7 –or– B6 – B7 while in DisplayPort Configuration.
15:8	DP Source Device Pin	00000000b = DP Source device pin assignments are not supported.
15.0	Assignments Supported (reported by a DP Source	XXXXXX1b = RESERVED.
		XXXXXX1Xb = RESERVED
	device receptacle or DP Sink device	
	(direct-attach) plug)	XXXXX1XXb = Pin Assignment C is supported. ^b
		XXXX1XXXb = Pin Assignment D is supported. ^{c d}
		XXX1XXXXb = Pin Assignment E is supported. ^e
		XX1XXXXXb = RESERVED.
		X1XXXXXb = RESERVED.
		1XXXXXXXb = RESERVED.
23:16	DP Sink Device Pin	00000000b = DP Sink device pin assignments are not supported.
	Assignments Supported (reported by	XXXXXXX1b = RESERVED.
	a DP Sink device receptacle	XXXXXX1Xb = RESERVED.
	or DP Source device	XXXXX1XXb = Pin Assignment C is supported. ^f
	(direct-attach) plug)	XXXX1XXXb = Pin Assignment D is supported. ^{c g}
		XXX1XXXXb = Pin Assignment E is supported.h
		XX1XXXXXb = RESERVED.
		X1XXXXXb = RESERVED.
		1XXXXXXXb = RESERVED.
29:24	RESERVED	RESERVED (always 00h).
31:30	DPAM Version ^j	00b = Version 2.0 or earlier.
		01b = Version 2.1 or higher.
		~

Table 5-5: DP Capabilities (VDO in the Responder USB PD Discover Modes VDM)

Bit(s)	Description	Values ^a
1:0	Port Capability	00b = RESERVED.
		01b = DP Sink device-capable (including DP Branch device).
		10b = DP Source device-capable (including DP Branch device).
		11b = Both <i>DP</i> Source and Sink device-capable.
5:2	Signaling for Transport of DisplayPort Protocol	XXX1b = Supports DP bit rates and electrical settings (shall always be set apart from diagnostic purposes).
		XX1Xb = RESERVED.
		X1XXb = RESERVED.
		1XXXb = RESERVED.
6	Receptacle Indication	0 = DP interface is presented on a USB-C plug.
		1 = DP interface is presented on a USB-C receptacle.
7	USB 2.0 Signaling Not Used	0 = USB 2.0 may be needed on A6 – A7 – or – B6 – B7 while in DisplayPort Configuration.
		1 = USB 2.0 is not needed on A6 – A7 – or– B6 – B7 while in DisplayPort Configuration.
15:8	DP Source Device Pin Assignments Supported (reported by a <i>DP</i> Source device receptacle or <i>DP</i> Sink device (direct-attach) plug)	00000000b = DP Source device pin assignments are not supported.
		XXXXXX1b = RESERVED.
		XXXXXX1Xb = RESERVED.
		XXXXX1XXb = Pin Assignment C is supported. ^b
		XXXX1XXXb = Pin Assignment D is supported. ^{c d}
		XXX1XXXXb = Pin Assignment E is supported. ^e
		XX1XXXXb = RESERVED.
		X1XXXXXb = RESERVED.
		1XXXXXXXb = RESERVED.
23:16	DP Sink Device Pin Assignments	00000000b = DP Sink device pin assignments are not supported.
	Supported (reported by	XXXXXXX1b = RESERVED.
	a DP Sink device receptacle or DP Source device	XXXXXX1Xb = RESERVED.
	(direct-attach) plug)	XXXXX1XXb = Pin Assignment C is supported.f
	LICO	XXXX1XXXb = Pin Assignment D is supported. ^{c g}
		XXX1XXXXb = Pin Assignment E is supported. ^h
		XX1XXXXb = RESERVED.
		X1XXXXXXb = RESERVED.
		1XXXXXXXb = RESERVED.
31:24	RESERVED	RESERVED (always 00h).

If SVDM Version is 2.1 or higher, DPAM Version field is applicable else this field shall be set to 00b.

A Bit More Background

From DisplayPort Alt Mode 2.0 Spec

Future versions of this Standard may describe other modes associated with the DP_SID. Such modes shall be identified by having a non-zero value in bits 31:24 of the VDO. The DFP_U shall examine the list of modes returned until it finds 0s in bits 31:24 of the VDO and a non-zero value in bits 23:0 of the VDO (i.e., DP Capabilities). The DFP_U and UFP_U shall use the corresponding offset (indexed from 1) as the Object Position in the following commands:

SOP DisplayPort Configurations VDO Update

Table 5-8: DisplayPort Configurations

Table 5-13: SOP DisplayPort Configurations

Bit(s)	Description	Values	Bit(s)	Description	Values
1:0	Select Configuration	00b = Set configuration for USB.a	1:0	Select Configuration	00b = Set configuration for USB.a
		01b = Set configuration for UFP_U as a <i>DP</i> Source device. ^b			01b = Set configuration for UFP_U as a <i>DP</i> Source device. ^b
		10b = Set configuration for UFP_U as a <i>DP</i> Sink device. ^b 11b = RESERVED.			$10b = Set configuration for UFP_U as a DP Sink device.b$
5:2 ^c	Signaling for Cable	XXX1b = Supports all defined DP bit rates up to HBR3 -or-			11b = RESERVED.
	Information Transport of DisplayPort Protocol	capability is unknown	5:2	Signaling for Transport of DisplayPort Protocol	0h = Bit rate is unspecified (used only when the Select Configuration field is programmed for USB Configuration).
		XX1Xb = Supports <i>DP</i> bit rate UHBR10. X1XXb = Supports <i>DP</i> bit rate of UHBR20 (e.g., 0111b supports all <i>DP</i> bit rates,			1h = Select DP bit rates and electrical settings.
		including UHBR10 and UHBR20).			All other values are RESERVED.
7:6	RESERVED	All other values are RESERVED for higher bit rates. ^d RESERVED (always 00b).	7:6	RESERVED	RESERVED (always 00b).
15:8		00h = Deselect pin assignment.	15:8	Configure UFP_U Pin Assignment	00h = De-select pin assignment.
	Pin Assignment	04h = Select Pin Assignment C. ^e			04h = Select Pin Assignment C. ^c
		08h = Select Pin Assignment D. ^f			08h = Select Pin Assignment D. ^d
		10h = Select Pin Assignment E. ^g			10h = Select Pin Assignment E. ^e
25:16	RESERVED	All other values are RESERVED. RESERVED (always 000000000b).		C	All other values are RESERVED.
23.10 26 ^h	Cable UHBR13.5	$0 = \text{Not supported}^{i} - \frac{1}{\text{or} - \text{capability is unknown}}$	31:16	RESERVED	RESERVED (always 0000h).
20	Support	1 = Supported. $-1 = $ Supported.		~~~	1
27	RESERVED	RESERVED (always 0).			
29:28 ^h	Cable Active	00b = Passive -or- cable type is unknown			
	Component	01b = Active re-timer.			
		10b = Active re-driver.			
		11b = Optical.			
31:30 ^j	DPAM Version	00b = Version 2.0 or earlier.			

• This is the most challenging part for DPAM 2.1 DFP_U

01b = Version 2.1 or higher.

DisplayPort Status Update VDO Update

Table 5-7: DisplayPort Status Update

Bit(s)	Description	Values
1:0	DP Source/Sink Device Connected	00b = Neither a <i>DP</i> Source device nor <i>DP</i> Sink device is connected, -or- the adapter is disabled.
		01b = DP Source device is connected. $10b = DP$ Sink device is
		connected. ^a
		11b = Both a <i>DP</i> Source and Sink device are connected.
2 ^b	Power Low	0 = Adapter is not in low power state is functioning normally or is- disabled.
		1 = Adapter has detected low power and disabled <i>DP</i> support .
3 ^b	Enabled	0 = Adapter DP functionality is disabled.
		1 = Adapter DP functionality is enabled and operational.
4 ^d	Multifunction	0 = No preference for multifunction.
	Preferred	1 = Multifunction is preferred.
5 ^c	DisplayPort/ USB	0 = Request change to DisplayPort Configuration (if currently in USB Configuration).
	Configuration	1 = Request change to USB Configuration (if currently in
	Request	DisplayPort Configuration).
6 ^c	Exit DisplayPort	0 = Maintain the current mode.
	Alt Mode Request	1 = Request exit from DisplayPort Alt Mode (if currently in DisplayPort Alt Mode).
7^{d}	HPD State	$0 = HPD_Low.$
		$1 = HPD_High.^e$
8 ^d	IRQ_HPD	0 = IRQ_HPD has not been issued since the last status Message.
		$1 = IRQ_HPD.f$
9 ^g	NO_DPAM_SUSP	$0 = UFP_U/DP$ Sink device has no preference for entry into low
	END	power state.
		$1 = UFP_U/DP$ Sink device prefers not to enter low power state.
31:10	RESERVED	RESERVED (always 0000000h).

Table 5-6: DisplayPort Status Update

Bit(s)	Description	Values
1:0	DP Source/Sink Device Connected	00b = Neither a <i>DP</i> Source device nor <i>DP</i> Sink device is connected, $-or-$ the adapter is disabled.
		01b = DP Source device is connected.
		10b = DP Sink device is connected. ^a
		11b = Both a <i>DP</i> Source and Sink device are connected.
2 ^b	Power Low	0 = Adapter is functioning normally or is disabled.
		1 = Adapter has detected low power and disabled DP support.
3 ^b	Enabled	0 = Adapter DP functionality is disabled.
		1 = Adapter <i>DP</i> functionality is enabled and operational.
4 ^b	Multi-function Preferred	0 = No preference for multi-function.
		1 = Multi-function is preferred.
5 ^b	DisplayPort/	0 = Request change to DisplayPort Configuration (if currently
	USB Configuration	in USB Configuration).
	Request	1 = Request change to USB Configuration (if currently
		in DisplayPort Configuration).
6 ^b	Exit DisplayPort Alt	0 = Maintain the current mode.
	Mode Request	1 = Request exit from DisplayPort Alt Mode (if currently in DisplayPort Alt Mode).
7 ^c	HPD State	$0 = HPD_Low.$
		1 = HPD_High. ^d
8 ^c	IRQ_HPD	0 = IRQ_HPD has not been issued since the last status Message.
		$1 = IRQ_HPD.^{e}$
31:9	RESERVED	RESERVED (always 000000h).

Two New timers:

- tAttentionSpacing min 10ms
- tHpdConvertPd max 5ms

DPAM Version Resolution

Table 5-5: DPAM Version Resolution				
DFP U, Cable and UFP_U with DP SID	DFP_U	Cable	UFP_U	DPAM Version Resolution
DPAM Version	2.0 or earlier	2.0 or earlier	2.0 or earlier	2.0 or earlier ^{ab}
	2.1 or higher	2.0 or earlier	2.0 or earlier	2.0 or earlier ^{ab}
	2.0 or earlier	2.1 or higher	2.0 or earlier	2.0 or earlier ^{ab}
	2.0 or earlier	2.0 or earlier	2.1 or higher	2.0 or earlier ^{ab}
	2.1 or higher	2.1 or higher	2.0 or earlier	2.0 or earlier ^{ab}
	2.0 or earlier	2.1 or higher	2.1 or higher	2.0 or earlier ^{ab}
	2.1 or higher	2.0 or earlier	2.1 or higher	DPAM 2.1 or higher ^c
	2.1 or higher	2.1 or higher	2.1 or higher	2.1 or higher ^d
				(Shall support
				DPAM 2.1 or higher)

- a. If Initiator and Responder support SVDM Version 2.0 or earlier and if DisplayPort Alternate Mode is supported all DP Capabilities exchange shall follow DisplayPort Alt Mode on USB Type-C specification 2.0 or earlier.
- b. If Initiator and Responder both support SVDM Version 2.1 or higher and if either Initiator or Responder supports DPAM Version 2.0 or earlier, then all DP Capabilities exchange shall follow DisplayPort Alt Mode on USB Type-C specification 2.0 or earlier.
- c. When DPAM 2.1 or higher DFP_U and DPAM 2.1 or higher UFP_U are connected with a legacy active DPAM 2.0 cable, then the system shall exchange all DP Capabilities as per DisplayPort Alt Mode on USB Type-C specification 2.1 or higher but support HBR3 rates.
- d. If Initiator and Responder both support SVDM Version 2.1 or higher and DPAM Version 2.1 all DP Capabilities exchange shall follow DisplayPort Alt Mode on USB Type-C specification 2.1 or higher.

DPAM 2.1 CTS Update (1)

- 10.3.2 DPAM2.1 Entry with USB-C to USB-C non-emarked cable
- 10.3.3 DPAM2.1 Entry with USB-C to USB-C Passive TBT3 cable
- 10.3.4 DPAM2.1 Entry with Passive E-Marked USB-C to USB-C
- 10.3.5 DPAM2.1 Entry with USB-C to USB-C DP2.0 LRD Cable
- 10.3.6 DPAM2.1 Entry with USB-C to USB-C DP2.0 Active Retimer cable
- 10.3.7 DPAM2.1 Entry with USB-C to USB-C DP2.1 LRD cable
- 10.3.8 DPAM2.1 Entry with USB-C to USB-C Active Non-DP cable
- 10.3.9 DPAM2.1 Entry with USB-C to USB-C USB2.0 cable
- 10.3.10 DPAM2.1 Entry with USB-C to DP2.1 cable
- All these tests were added to make sure the DFP_U set correct cable information in DisplayPort Configurations VDO

DPAM 2.1 CTS Update (2)

- DPAM Version Resolution Tests
 - > 10.3.23 DPAM Version 2.1 DFP_U Connected to DPAM Version 2.0 or 2.1 UFP_U
 - > 10.4.3 DPAM Version 2.1 Cable Connected to DPAM Version 2.0 or 2.1 DFP_U
 - > 10.2.8 DPAM Version 2.1 UFP_U Connected to DPAM Version 2.0 or 2.1 DFP_U

Questions?

DisplayPort over USB-C

The most advanced display connection now uses the most versatile connector.

Learn More

Go to www.displayport.org

SS- D

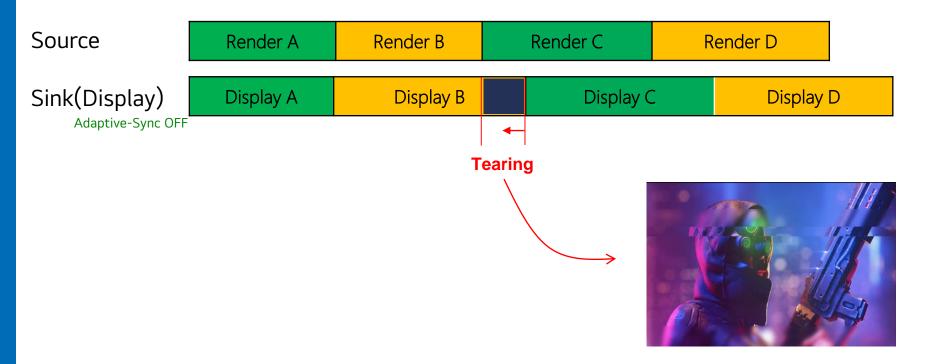
VESA AdaptiveSync Specification Overview and Test

Presented by Do Kyun Kim, Professional Engineer, and Seung Hyun Yoo, Senior Research Engineer, LGE

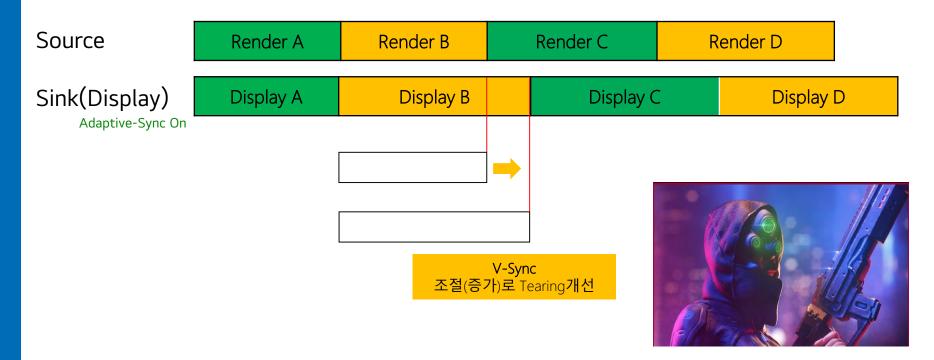
VESA AdaptiveSync Specification Overview and Test

Do Kyun Kim (keneth.kim@lge.com) Seung Hyun Yoo (seunghyun.yoo@lge.com) LG Electronics, Inc. *10. Oct. 2023*

Adaptive-Sync Function


- 찢어짐 Frame 빠짐
 목적 : Tearing/Stuttering 방지
- 원인 : GPU가 보내는 V-Sync와 모니터가 처리하는 V-Sync간 차이 발생
- 해결 : GPU가 고정 Frame Rate로 전송, 모니터에서 Variable Frame Rate 처리 AdaptiveSync AdaptiveSync 이전
- AdaptiveSync 동작
 - GPU(Source)는 그래픽 연산에 따라 Vsync길이 조절하여 변경된 주사율(Frame Rate) 전송
 - Monitor(Sink)에서는 수신된 비디오 Frame Rate에 맞게 처리하여 Display

Adaptive-Sync Operation


• Adaptive-Sync OFF

Adaptive-Sync Operation

• Adaptive-Sync On : V-Sync 조절로 Tearing개선

History

2009년

Adaptive-Sync

기능 발표

Target : eDP(embedded DP)

2014년

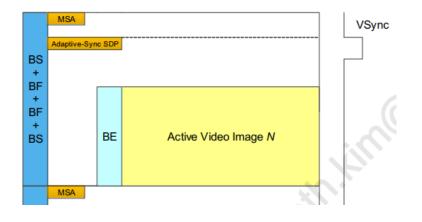
Adaptive-Sync

Interface 확장

Target : DP 1.2~1.4a

2022년

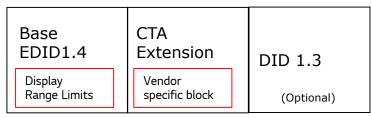
VESA AdaptiveSync CTS 발표 신규기능, 요구사항 추가 Target : DP 2.0~2.1


Adaptive-Sync Mode

- Adaptive V-Total(AVT)
 - Gaming Mode
 - CVT2.0¹⁾표준에서의 Reduced Blanking Timing version 3(RB3) 사용
 - Source는 Sink에 정의된 Frame Rate 범위 내에서 Adaptive Sync SDP 생성하여 주파수 가변
- Fixed Average V-Total(FAVT)
 - Media에서의 Media playback을 지원하기 위해 사용
 - CVT2.0표준에서의 Reduced Blanking Timing version 3(RB3) 사용
 - Source에서는 고정된 V-Total로 Video Data를 송부

DP2.1 VESA AdaptiveSync 추가 된 요구사항

- Adaptive-Sync Data Block DisplayID2.1
 - CVT¹⁾2.0^o Reduce Blanking Version3 Timing _{CVT2.0}
- Adaptive-Sync SDP²) data structure Version1 DisplayPort2.1



CVT(Coordinated Video Timings)
 SDP(Secondary Data Packet)

EDID/DisplayID 요구사항

• 기존(Base EDID 1.4 + CTA Extension)

• 변경(Base EDID 1.4 + CTA Extension + Display ID 2.1)

Base EDID1.4	CTA Extension	DID 1.3	DID 2.x
Display	Vendor	(Optional)	Adaptive-Sync
Range Limits	specific block		Data Block

Multi DisplayID Block(1.3 / 2.0 사용 가능)

Adaptive-Sync Data Block DisplayID2.1

Byte#	Bit	Description/Format/Priority		
00h	7:0	Adaptive-Sync Data Block Format Value 2Bh		
	2:0	Block Revision 000b = Revision 0.		
01h	3	RESERVED		
0111	6:4	Number of Payload Bytes (M) 000b = 5+0 bytes per descriptor		
7		RESERVED		
02h	7:0	Number of Payload Bytes in Block(N)		
03h – 03h+M-1	(M*8-1):0	First Adaptive-Sync Operation Mode		
03h ~ 03h+2M-1	(M*8-1):0	Second Adaptive-Sync Operation Mode		
03h+(N- 1)*M ~ 03h+(N*M) -1	(M*8-1):0	Nth Adaptive-Sync Operation Mode		

Byte#	Bit	Description/Format/Priority			
	0	Adaptive-Sync Range Ob = Non-Native Panel Range. 1b = Native Panel Range.			
	1	Successive Frame Duration Increase Tolerance(SFDIT) 0b = 미지원 1b = 지원			
О	3:2	00b = Fixed Average V-Total Mode 지원 01b = Fixed Average V-Total Mode 와 Adaptive V-Total Mode 지원			
	4	Ob =Adaptive-Sync Mode 변경 시 Seamless Transition 지원 1b =Adaptive-Sync Mode 변경 시 Seamless Transition 미 지원			
	5	Successive Frame Duration Decrease Tolerance(SFDDT) Ob = 미지원 1b = 지원			
	7:6	RESERVED			
1	7:0	Max Single Frame Duration Increase (Max 63.75ms)			
2	7:0	Minimum Refresh Rate			
3	7:0	Maximum Refresh Rate Low Bits 7:0			
4	1:0	Maximum Refresh Rate High Bits 9:8			
4	7:2	RESERVED			
5 7:0 Max Single Frame Duration Decrease (Max 63.75ms)					

CVT2.0 Generator

• Reduce Blanking Version3 Timing 생성 가능

1) Enter Desired Horizontal Pixels Here (I_H_PIXELS) =>		
2) Enter Desired Vertical Lines Here (I_V_LINES) =>		
3) Enter Vertical Scan Frame Rate Here (I_IP_FREQ_RDQ) => NOTE: Actual frame rate will be within 0 Hz due to pixel clock rounding to 0.001MHz. Actual frame rate is off target by 0 ppm.		
4) Enter (Y or N) If You Want Reduced Blanking Here =>		
5) Use Reduced Blank (RB) Timing version (2, 3) rules (I_RED_BLANK_VER) =>		
6) Apply (1000/1001) factor to Frame Rate for video optimized variant (I_VIDEO_OPT) (Y or N) =>		
7a) Additional Horizontal Blank Pixels (I_ADDITIONAL_HBLANK) (default blank is 80 pixels, additional horizontal blank pixels between 0 and 120 may be added) =>		
7b) Apply Early Vertical Sync Location Required (I_EARLY_VSYNC_RQD) (Y or N) =>		
7c) Additional Vertical Blank Time (I_VBLANK - 460us) => Note: additional vertical blank time in the range 0 to 245 us plus duration of one horizontal line may be added. DisplayID Type X descriptor additionally requires		

DownLoad URL : <u>https://vesa.app.box.com/s/o5m4tqtyt1b1qx0138ridi6lb4gq5ch6</u>

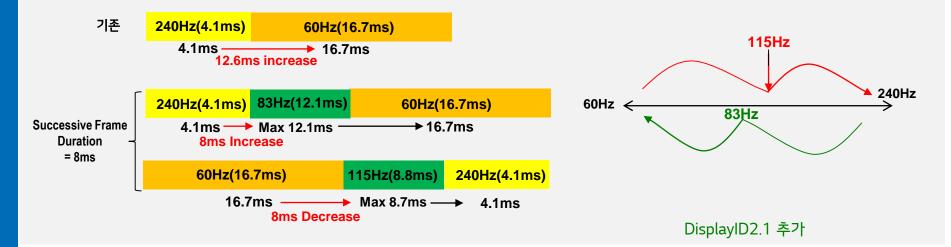
Adaptive-Sync SDP

Adaptive-Sync SDP SCR Header Block

Byte#	Bit #	Description/Format/Priority	
НВО	7:0	Secondary Data Packet ID 00h	
HB1	7:0	Secondary Data Packet Type 22h=Adaptive-Sync	
HB2	4:0	Revision Number 00h=Initial revision 01h=VESA AdaptiveSync, Version 1 is required	
	7:5	Reserved	
4:0 00h=No Payload Data		Number of Valid Data Bytes 00h=No Payload Data 01h=9개의 Payload Data	
7:5		Reserved	

Adaptive-Sync SDP SCR Payload Bytes(1/2)

Byte#	Bit #	Description/Format/Priority	
DBO	0:1	VARIABLE_FRAME_RATE_DISABLE 00 = AVT Mode_ Frame Duration 변경 01 = AVT Mode_ Frame Duration 고정 10 = FAVT Mode_ Target refresh rate 정보 없음 = FAVT Mode_ Target refresh rate 정보 받음	
	2	Adaptive Sync SDP Transmission Disable in PR_Active State(Panel Replay 기능 지원시) 0 = Adaptive-Sync SDP와 타이밍 동기화 Enable 1 = Adaptive-Sync SDP와 타이밍 동기화 Disable	


Adaptive-Sync SDP SCR Payload Bytes(2/2)

Byte#	Bit #	Description/Format/Priority		
DBO	3	Remote Frame Buffer (RFB) Update in PR_Active State 0 = No RFB update 1 = Update the RFB		
	7:4	Reserved		
DB1	7:0	Minimum Vertical Total [7:0]		
DB2	7:0	Minimum Vertical Total [15:8]		
DB3	7:0	Target Refresh Rate[7:0]		
	1:0	Target Refresh Rate[9:8] - AVT mode : DB4[1:0] = 00b and DB3 = 00h. - FAVT mode : Match the Target Refresh rate		
	4:2	Reserved		
DB4	5	Target Refresh Rate Divider(FAVT only) 0=1.000		
	6	Successive Frame Duration Increase Configuration 0= 미사용 1= DB5지정 값 사용		
	7	Successive Frame Duration Increase Configuration 0= 미사용 1= DB6지정 값 사용		
DB5	7:0	Successive Frame Duration Increase Value(0 to 63.75ms)		
DB6	7:0	Successive Frame Duration Decrease Value(0 to 63.75ms)		
DB7	7:0			
DB8	7:0	- Adaptive-Sync 작동이 비활성화되었을 때 재생률을 유지하 는 VTotal LSB(Least Significant Byte) 값		

Successive Frame Duration Increase/Decrease Tolerance

- 배경 : 급격하게 Frame Duration 증가 시 Flicker나 Judder 발생 할 수 있음
- 기능 : 표기된 Max Successive Frame Duration Tolerance 맞춰 Video Rendering
 - e.g. Max Successive Frame Duration Increase/Decrease Tolerance = 8ms

Adaptive-Sync Display CTS ver 1.1

Program Objectives & Requirements

Adaptive-Sync Display Logo

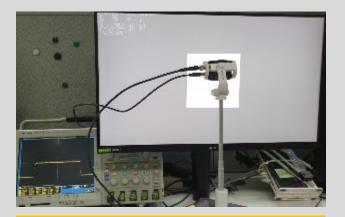
목적 : Flicker, G2G, Jitter, Frame Drop에 대한 Display 성능 평가

For Gaming

항목별 현상 / 측정

Test 항목 현상 측정 동영상 Flicker Grey to Grey (G2G) 동영상 동영상 Frame Drop 동영상 Jitter This / mainty for All

측정 항목 및 장비


Flicker

G2G : Response Time, Over/Undershoot

Frame Drop, Jitter

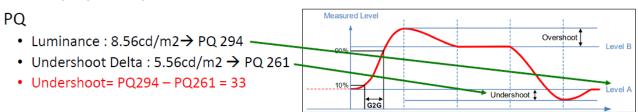
Device : Color Meter (CA:410)

Device : Photo Sensor DAQ(AD converter) PC(Generation Tool)

Device : DSLR 카메라 Photo Shop

Adaptive-Sync Display CTS1.1 Requirements(1/2)

		Tier		
		AdaptiveSync	MediaSync	
Maximum Refresh Rate		≥144Hz	≥60Hz	
Minimum Refresh Rate		≤60Hz	≤48Hz	
	Response Time(Avg)	≤5ms	_	
G2G	Overshoot(Max)	≤ Delta-PQ Tolerance	≤ Delta-PQ Tolerance	
(Max Frame Rate)	Undershoot(Max)	of each section (다음페이지 참조)	of each section (다음페이지 참조)	
Flicker	Low variability refresh	≤-50dB	≤-50dB	
Flicker	High variability refresh	≤-50dB	N/A	
Frame-to-frame jitter duration for 23.976- to 60-Hz video		±0.5ms	±0.5ms	
Frame Drop		0		
The 10 Static frequency video frame rates 지원		23.976, 24, 25, 29.9 30, 47.952, 48, 50, 59.94, 60Hz		
If Successive Frame Duration Increase Tolerance is present, minimum duration for variable		8.5 ms 240Hz(4.1ms) →79Hz(12.6ms) → 60Hz(16.7ms)	1 ms	
If Successive Frame Duration Decrease Tolerance is present ,minimum duration for variable		9.75 ms	1 ms	



Adaptive-Sync Display CTS1.1 Requirements(2/2)

Delta-PQ Tolerance Table

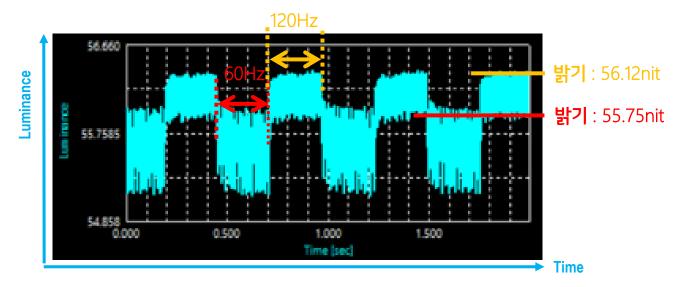
	To/End	0	31	63	95	127	159	191	223	255
	0			18	18	18	18	18	18	15
	31			15	15	18	18	18	18	10
	63				13	15	15	15	18	10
tart	95			20		10	15	15	15	10
From/Start	127			20	20		10	10	10	10
Fro	159			20	20	15		8	10	10
	191			30	20	20	13		8	10
	223			30	20	20	20	12		5
	255			30	30	20	20	10	10	

 Luminance를 PQ값으로 치환하여 Over/undershoot과 Saturation 된 부분의 차이를 계산

Testing Procedure

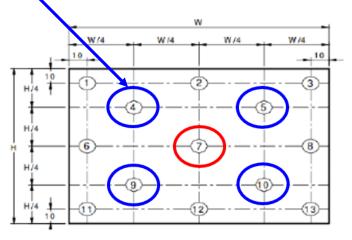
Test Sequence Ambient temperature 72.5F(22.5°C) ~76F(24.4°C)

- <1000nit 제품
 - 1. Warm-up phase(40nit) -1hour
 - 2. Static Flicker tests
 - 3. Variable Flicker tests
 - 4. G2G tests
 - 5. Frame Drop tests
 - 6. Jitter tests
 - 7. If the display supports HDR, then also the HDR tests


- >1000nit 제품
 - 1. Warm-up phase(40nit) -1hour
 - 2. Static Flicker tests
 - 3. Variable Flicker tests
 - 4. Frame Drop tests
 - 5. Jitter tests
 - 6. <u>Warm-up phase(185nit)- 20 minutes</u>
 - 7. High-luminance G2G Tests
 - 8. If the display supports HDR, then also the HDR tests

DC Offset 방지를 위해 반드시 순서대로 Test 진행

Flicker tests(1/2)


- 목적 : Frame Rate 변화에 따른 깜빡임 확인
 - 각 Frame Rate 마다 Pixel 소자의 충/방전 시간이 다름으로 밝기(Luminance) 차이 존재

Flicker tests(2/2)

- Test 환경 : SDR mode 40cd/m2 by ±5%Center
 - Center >-60dB 측정되는 경우 → Corner에서(4 Point) Test 추가 측정
- Test Refresh Rates
 - Static : 23.976, 24, 25, 29.9, 30, 47.952, 48, 50, 59.94, 60Hz
 - Variable
 - Low variability refresh : Zigzag Sweep, Sine Wave Sweep
 - High variability refresh : Square Wave, Random Frame rate

G2G tests(1/2)

- 목적 : Code value 별 응답 속도
- Test 환경 : SDR 8-bit Gamma 2.2 Code Values
 - 9 x 9 Matrix 사용

Table 7-1: SDR G2G Test Levels – 8-bit Gamma 2.2 Code Values, Displays with MaxLuminance < 1,000 cd/m²

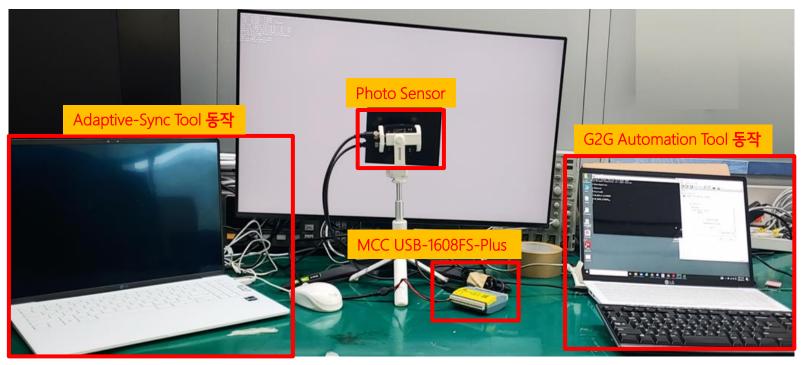
Table 7-2: SDR High-Luminance G2G Test Levels – 8-bit Gamma 2.2 Code Values, Displays with MaxLuminance ≥ 1,000 cd/m²

9 × 9 Matrix Test Patch Values	SDR 10% Test Patch	SDR 90% Gray Surround
Test 1 (Black)	0	127
Test 2 (Very Dark Gray)	31	127
Test 3 (Dark Gray)	63	127
Test 4 (Dark-Mid Gray)	91	127
Test 5 (Mid Gray)	127	127
Test 6 (Light Mid Gray)	159	127
Test 7 (Light Gray)	191	127
Test 8 (Bright Gray)	223	127
Test 9 (White)	255	127


9 × 9 Matrix Test Patch Values	SDR 10% Test Patch	SDR 90% White Surround
Test 1 (Black)	0	255
Test 2 (Very Dark Gray)	31	255
Test 3 (Dark Gray)	63	255
Test 4 (Dark-Mid Gray)	91	255
Test 5 (Mid Gray)	127	255
Test 6 (Light Mid Gray)	159	255
Test 7 (Light Gray)	191	255
Test 8 (Bright Gray)	223	255
Test 9 (White)	255	255

G2G tests(2/4)

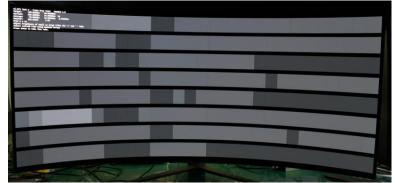
• Test Pattern : CTS1.0 5x5 테이블 → CTS1.1 9x9 테이블



Tests that end at code value 31 are excluded because at the 1.79 cd/m₂ luminance level, testing tools are typically **not** both sufficiently fast and sufficiently accurate to obtain reliable results.

G2G tests(2/2)

• Tool Setting : MCC USB-1608FS-Plus(DAQ) + Photo Sensor + 노트북 2대


Frame drop tests

• 목적 : Frame Drop 확인

- Test 환경 : 1개의 White블럭이 Frame당 오른쪽으로 이동
 - Testing frequency : Max refresh rate/ Random refresh rate
- 측정 방법 : 카메라 Shutter Speed를 1초로 설정하고 촬영 후 Drop된 Box가 있는지 확인

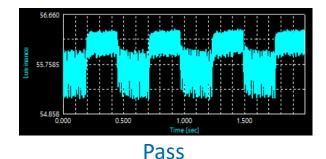
Max refresh rate

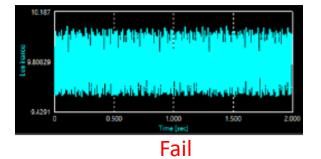
Random refresh rate

Jitter tests

- 목적 : Video 신호 출력 error확인
- Test 환경 : Frame Drop Testing 패턴과 동일
 - Testing frequency : 23.976, 24, 25, 29.97, 30, 47.952, 48, 50, 59.94, 60Hz
- 측정 방법 : 움직이는 Block을 1초 동안 2번 촬영하여 각 Block의 Luminance 변화가 있는지
 - 포토샵 프로그램에서 Code Value Delta값 확인 가능(자세한 요구사항은 CTS 참조)

촬영1


촬영2



HDR tests

- 목적 : HDR On에서 Frame Rate 변화 여부 확인 SDR만 지원시 Test 하지 않아도 됨
- Test 환경 : Flicker testing에서의 Square Wave 사용
- 측정 방법 : Frame Rate에 따른 Luminance 변화 Pattern이 일정 한지 확인

ClearMR Specifications and Compliance Testing Overview

Presented by Dr. Yongwoo Yi, Principal Engineer, Samsung Display **VESA Seoul Workshop 2023**

ClearMR

: Specifications and Compliance Testing Overview

October 10, 2023 Yongwoo Yi Samsung Display Co. Ltd.

SAMSUNG

SAMSUNG DISPLAY

ClearMR™

Table of Contents

01 **Problem statement**

02 Clear Motion Ratio design

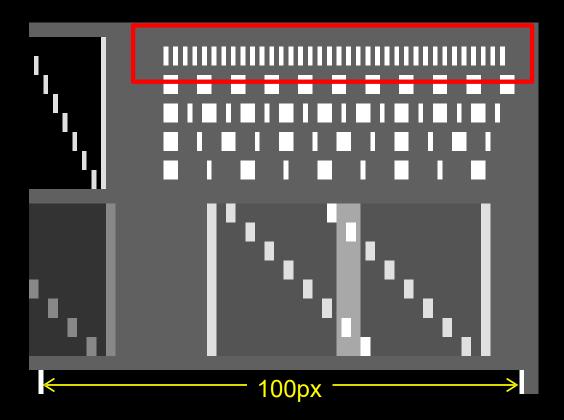
03 Setup for testing: Hardware and Software

04 Seeing is believing

ClearMR™

Introduction

01 **Problem statement**

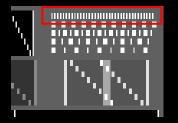

02 Clear Motion Ratio design

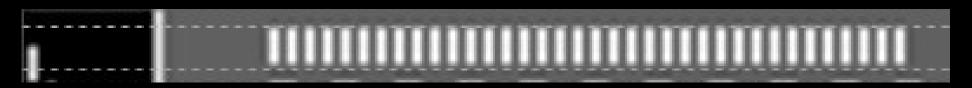
03 Setup for testing: Hardware and Software

04 Seeing is believing

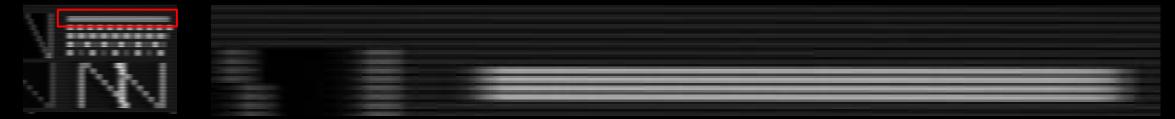
SAMSUNG DISPLAY

Blur beyond recognition




still frame of the actual pattern

motion composite showing blur similar to what humans might see


Blur beyond recognition

Actually, vertical lines 2 pixels wide, 2 pixels apart

Horizontal lines?

Product A 240Hz

10000 / 240 = 41.67

Product B

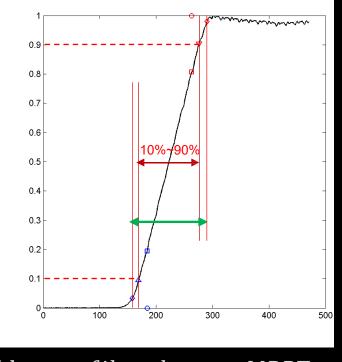
175Hz

10000 / 175 = 57.14

10110-00120

* 1 frame Captured by High-Speed Camera(10,000 fps)

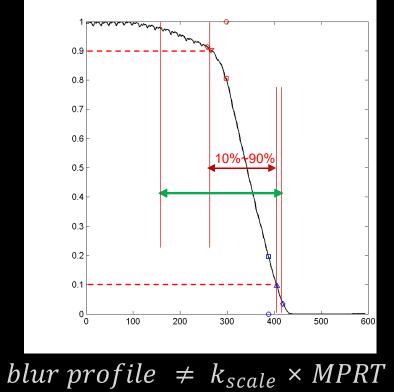
The problem statement

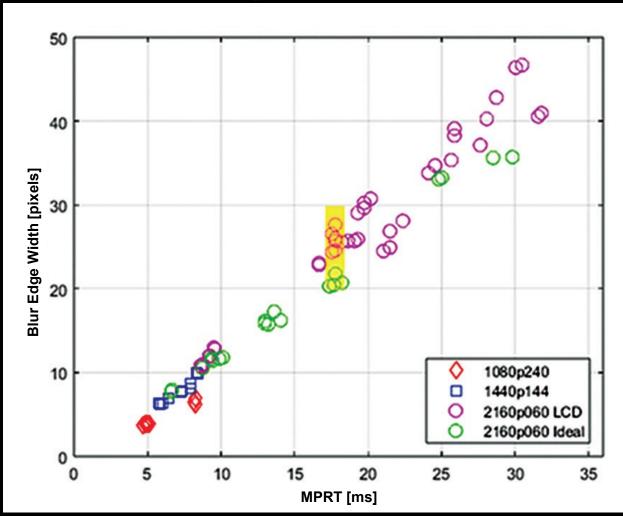

- How blurry is the picture
- Is blur by Product A the same as blur by Product B?
- What metric/method is best for quantifying blur?
 - Hertz (Hz)
 - milliseconds (ms)
 - G2G? MPRT?

_	=	2.1	
	a dan di gan kidan di kan di kana di k Kana gan di kana di kan Kana di kana di		
····································	Product	A [240Hz]	
	Product	B [175Hz]	

Blur vs. MPRT(Moving Picture Response Time)

MPRT [ms]


- only analyzes 80% of light
- Incorrectly assumes linearity outside of 10% and 90%


Linear blur profile

blur profile ~ $k_{scale} \times MPRT$

Blur vs. MPRT(Moving Picture Response Time)

Blur Edge Width vs. MPRT

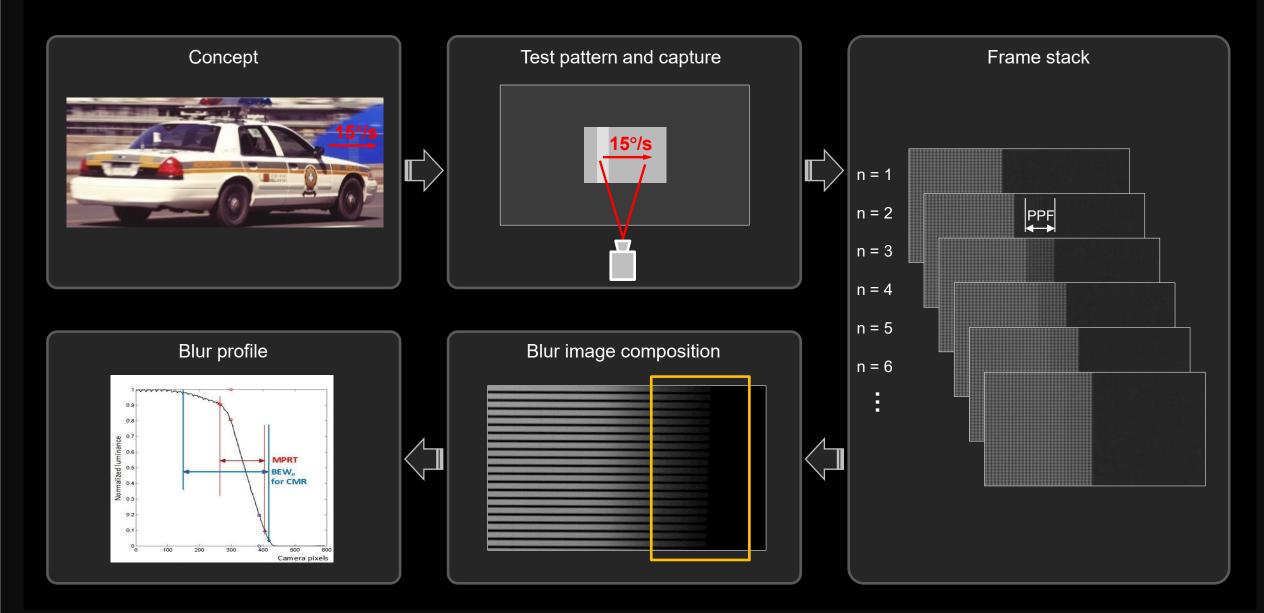
A new metric : Clear Motion Ratio (CMR)

No objective blur description

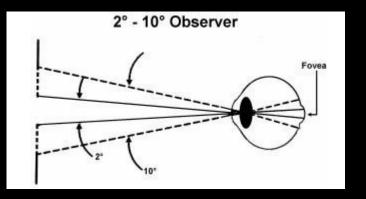
- Gray-to-gray is a step response, do not explain the full picture
- MPRT only analyzes 80% of light
- A new metric must:
 - Capture all the display light output
 - Be suitable for high density displays > 300 ppi
 - Be repeatable
 - Make fair points of comparison (eg. Limit overdrive to eliminate ghosts)

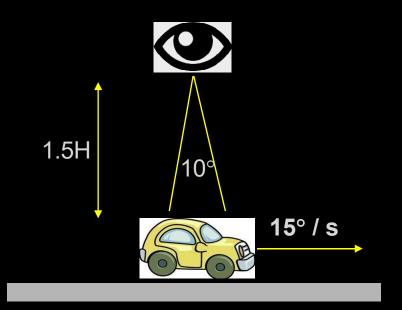
✓ ClearMR uses the new Clear Motion Ratio (CMR) for a *better* and *fairer* measure of display blur. ClearMR™

Methods

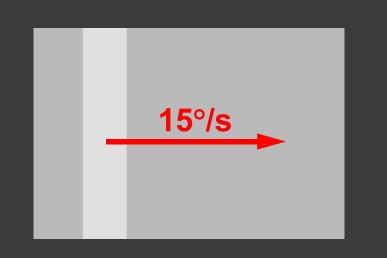

01 Problem statement

02 Clear Motion Ratio design

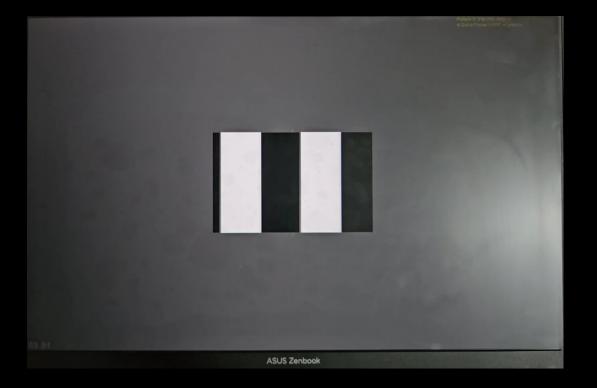

03 Setup for testing: Hardware and Software


04 Seeing is believing

ClearMR : Theory of Operation

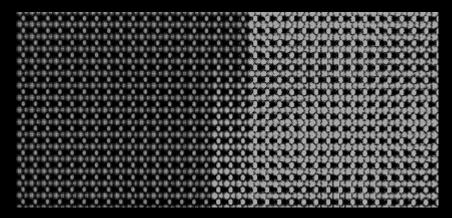

Concept

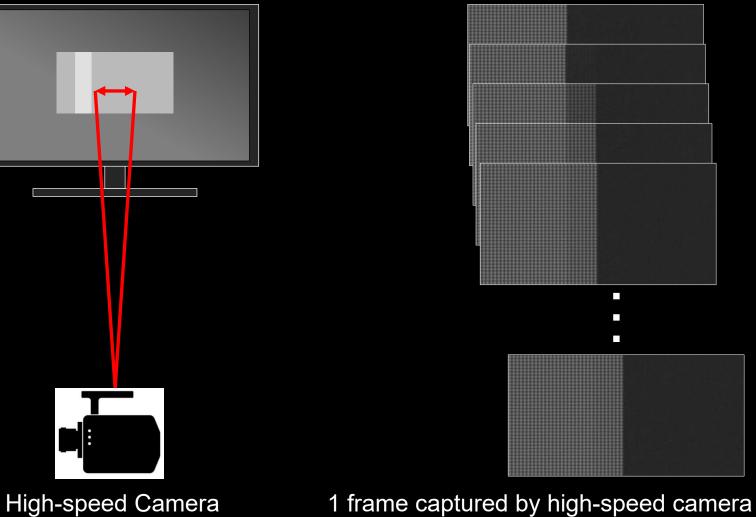



- Determine pixels viewed when eye tracking
 - Use a focus area similar to the CIE Standard Observer
 - 10 ° field of view good for motion
 - 2 ° model would apply to fixed objects
 - Viewing distance at **1.5H**(height)
 - Fast motion but does not exceed human tracking capability
 - **15°/s** angular velocity (v_{θ})
 - ~4s to cross a 16:9 screen (61.3 °)

Test pattern

Test pattern




Patten speed : PPF

v1.2.01	Calculator 2023-04-02	and table to d Please edit onl		oplicable PPF.	The DUT ma	y only use integ	ral PPF values	
ע ט	FPS	hres	vres	dv	AR	PPF(REAL)	floor(PPF)	ceil(PPF)
[deg/s]	[Hz]	[pixels]	[pixels]	[H]	[ratio]	[pixels/frame]	[pixels/frame]	[pixels/frame]
15	60	1920	1080	1.5	1.78	7.830	/	8
15	60	3840	2160	1.5	1.78	15.660	15	16
15	120	1920	1080	1.5	1.78	3.915	3	4
15	120	3840	2160	1.5	1.78	7.830	7	8

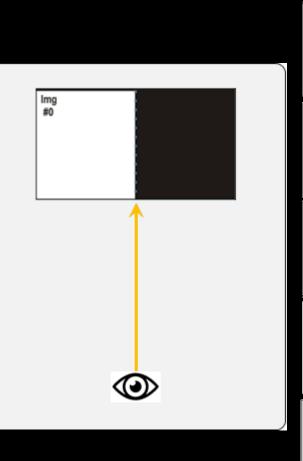
- 15° / s \rightarrow PPF (pixel per frame)
- Calculated PPF is Real number \rightarrow flooring & ceiling
- Logarithmic Interpolation

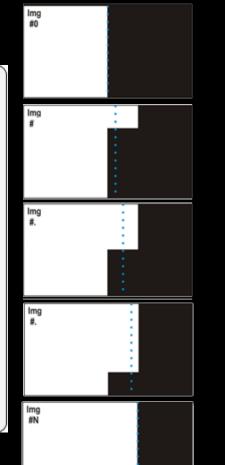
Image captured by high-speed camera

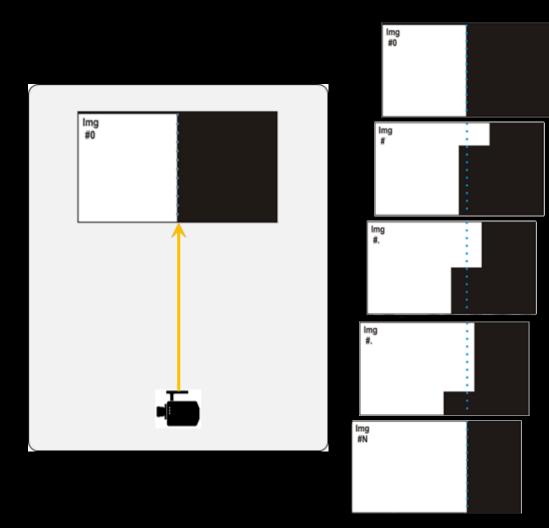
ex) 240Hz monitor with 10,000fps camera \rightarrow N = 10000/240 = 41.67

lmg#1

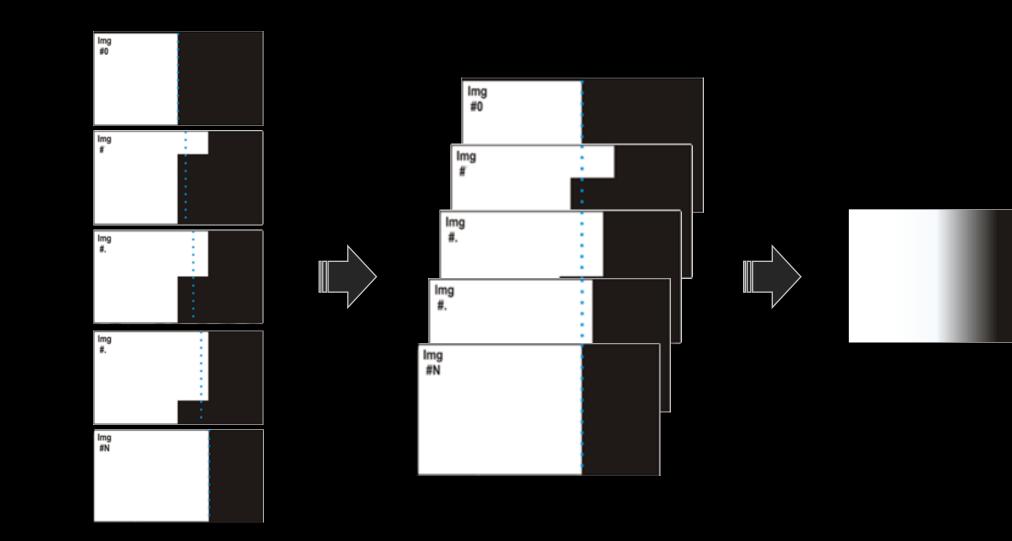
lmg#2

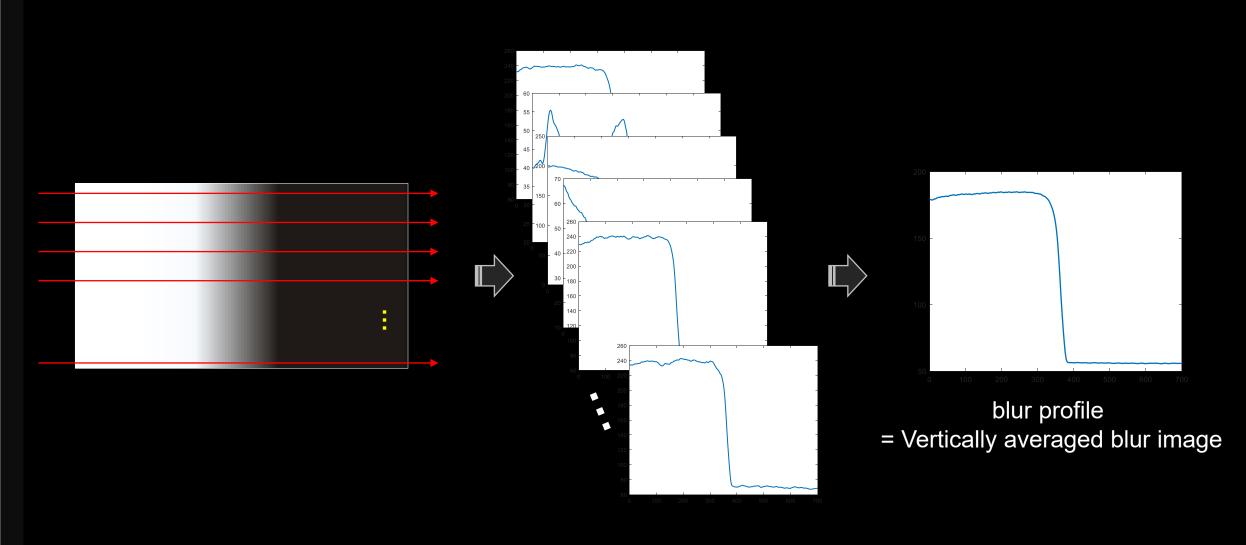

Img#3

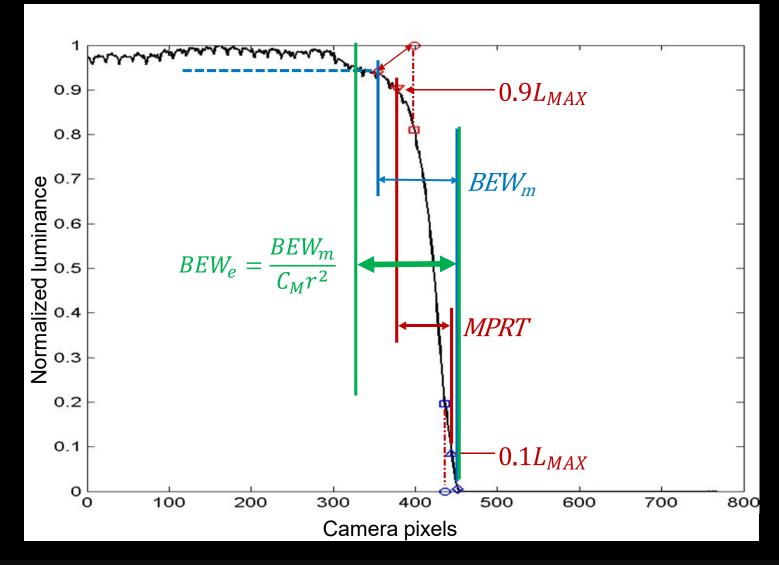

Img#4


lmg#5

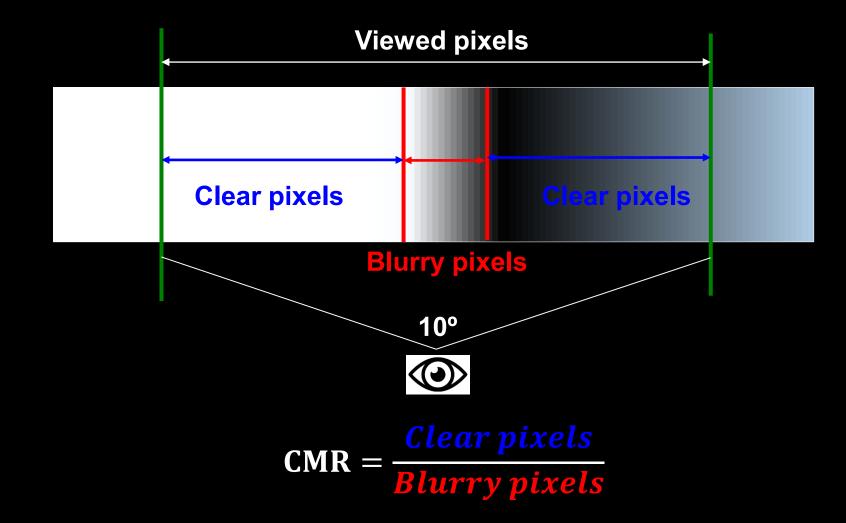
lmg#N

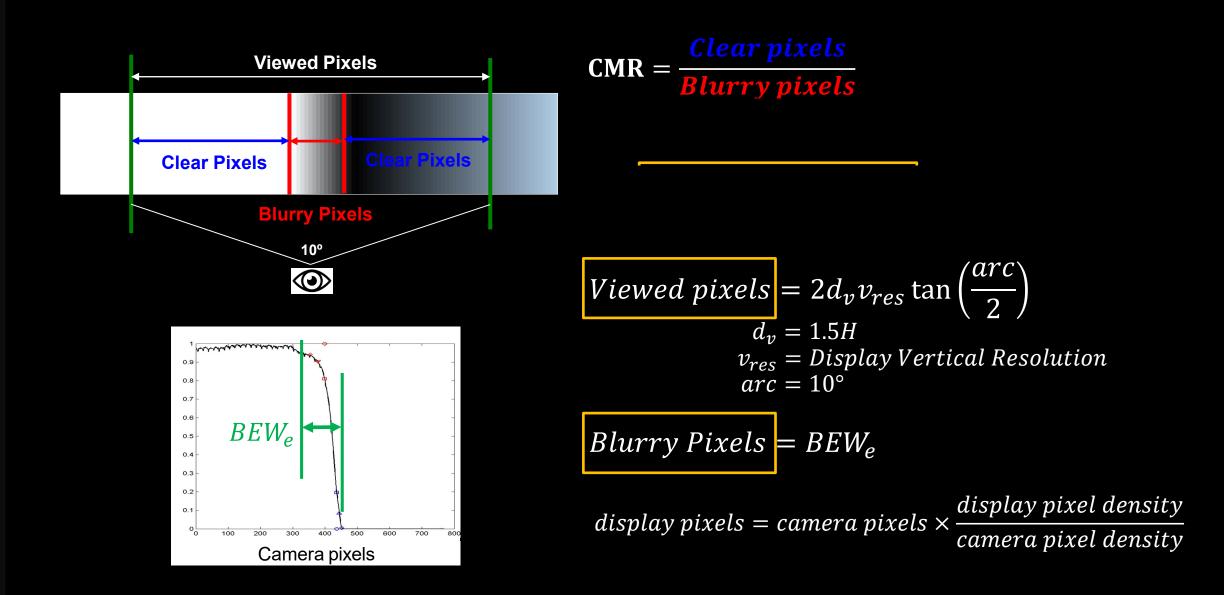

Blur image composition




Blur image composition

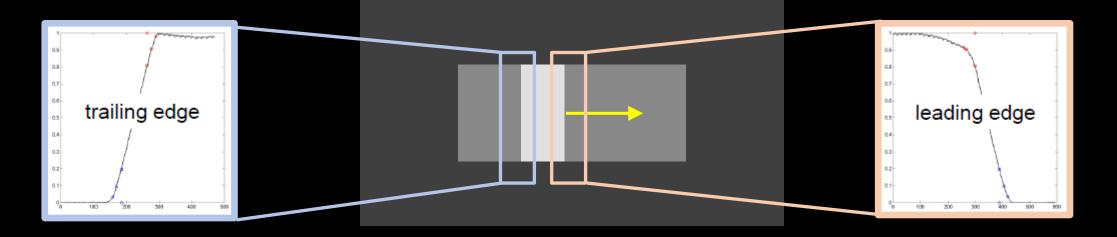
Blur profile


Profile identifies the Blur Edge Width (BEW)

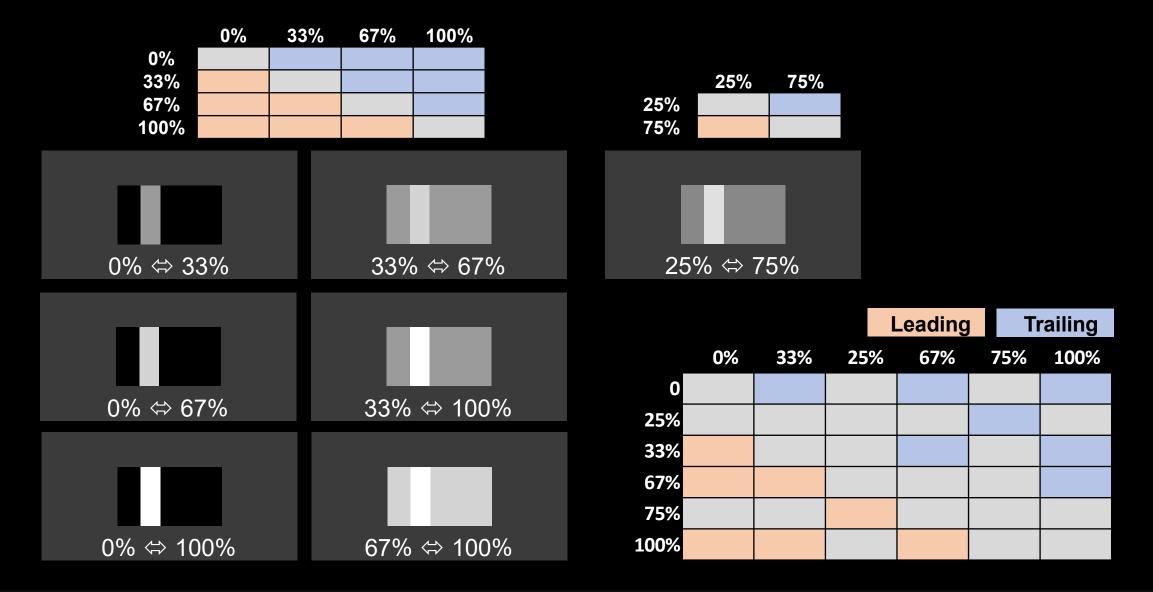

- Accounts for non-linearity
- Accounts for light outside of BEW_m
- Challenge: calculation should include all luminance change
- BEW_m is between the knees (◊) of the profile
- BEW_e corrects for non-linearity of the profile locus outside of BEW_m
 - * *BEW*_m : measured BEW
 - * $\textit{BEW}_{\rm e}\,$: effective BEW
 - * C_m : contrast modulation
 - * r^2 : coefficient of determination

CMR(Clear Motion Ratio)

Clear Motion Ratio : Ratio of *Blurry pixels* and *Clear pixels* in a 10° FOV with Viewing distance at 1.5H



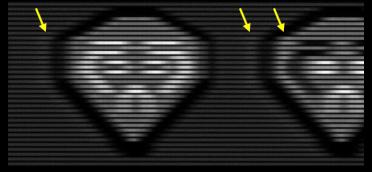
CMR(Clear Motion Ratio)


SAMSUNG DISPLAY

Rising and Falling (Leading and Trailing)

				Leading	g ·	Trailing			
	0%	33%	25%	67%	75%	100%			
0									
25%									
33%									
67%									
75%									
100%									

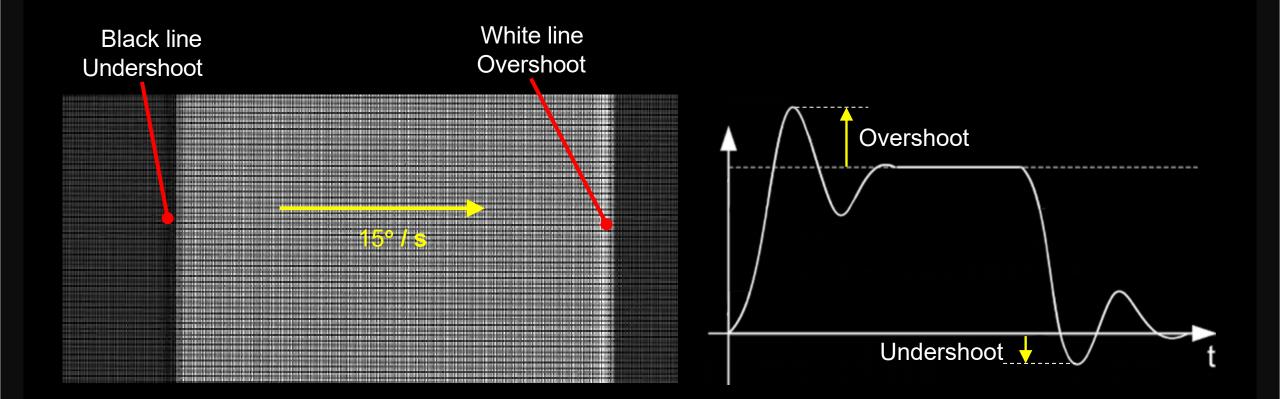
Rising and Falling (Leading and Trailing)


Ghosts and coronas

- Ghosts
 - Uneven transitions
 - Trailing artifact
 - Usually, a dark trail

Coronas

- -Inverse of ghosts
- Over-shooting the final pixel value
- -A trailing glow



Working definitions by Mark Rejhon (2021)¹...

- 1. Accessed July 26, 2021. https://blurbusters.com/fag/lcd-motion-artifacts
- 2. Test patterns © 2021, Samsung Display Co., Ltd. right reserved.

Over/undershoot creates ghosts and coronas

Moving bar subjective test

Overshoot < 20%, Undershoot < 10%

ClearMR™

Methods

01 Problem statement

02 Clear Motion Ratio design

03 Setup for testing: Hardware and Software

04 Seeing is believing

High Speed Camera & Lens

- High Speed Camera
 - 10,000 fps
 - Monochrome 12-bit+ precision
 - at least 768px wide
 - Example: Photron FASTCAM Mini AX100 or better
 Vision Research Phantom VEO 1010 or better
- Macro Lens
 - Macro with 1:1 magnification (avoid ultra macro with over 1:1 magnification)
 - Prime, f/2.8, fixed focal length, typically 70 to 105 mm
 - Match lens size with camera sensor (ie: full frame lens with full frame camera sensor)
 - Match lens mount type with camera (ie: Nikon F / Canon / C)
 - Check back focus length (Photron appnote)
 - Example: Sigma 105mm f/2.8

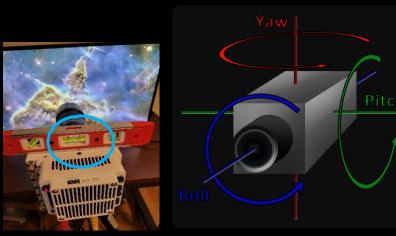
Macro Lens Setup

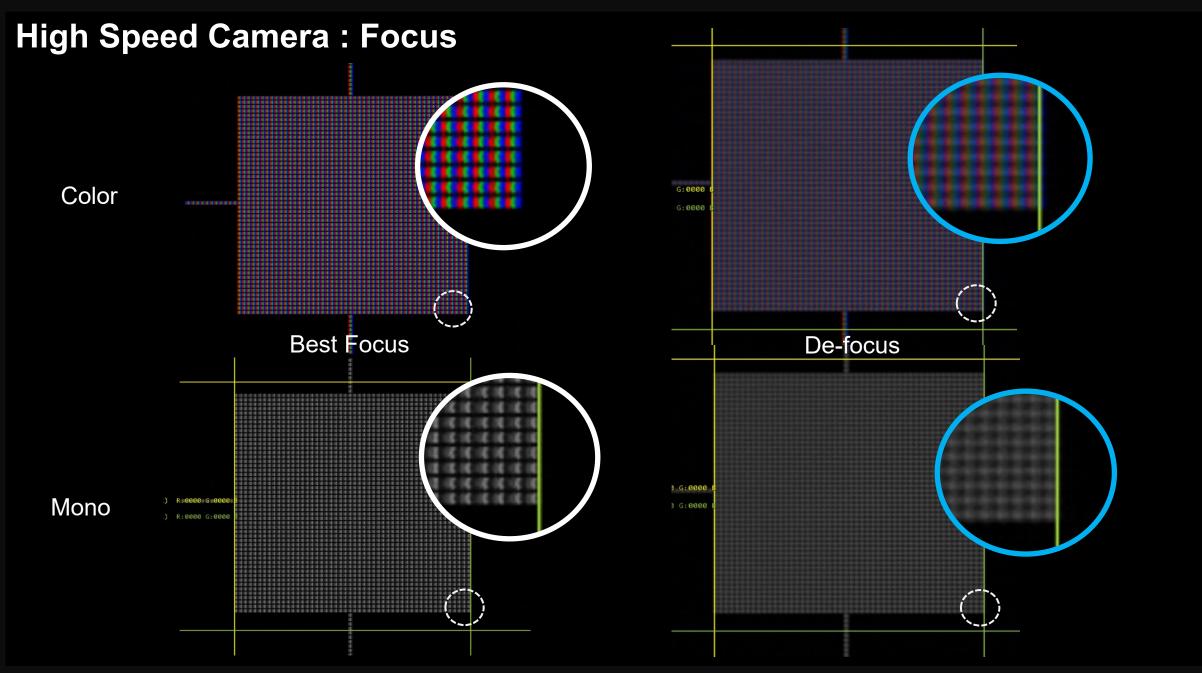
- Focal Distance
 - Get close ~0.3m screen-to-sensor
 - The camera's ideal 1:1 magnification occurs at the minimum focus distance
 - Target between 85% and 100% of the ideal magnification
 - CTS Calculator helps find the ideal magnification.

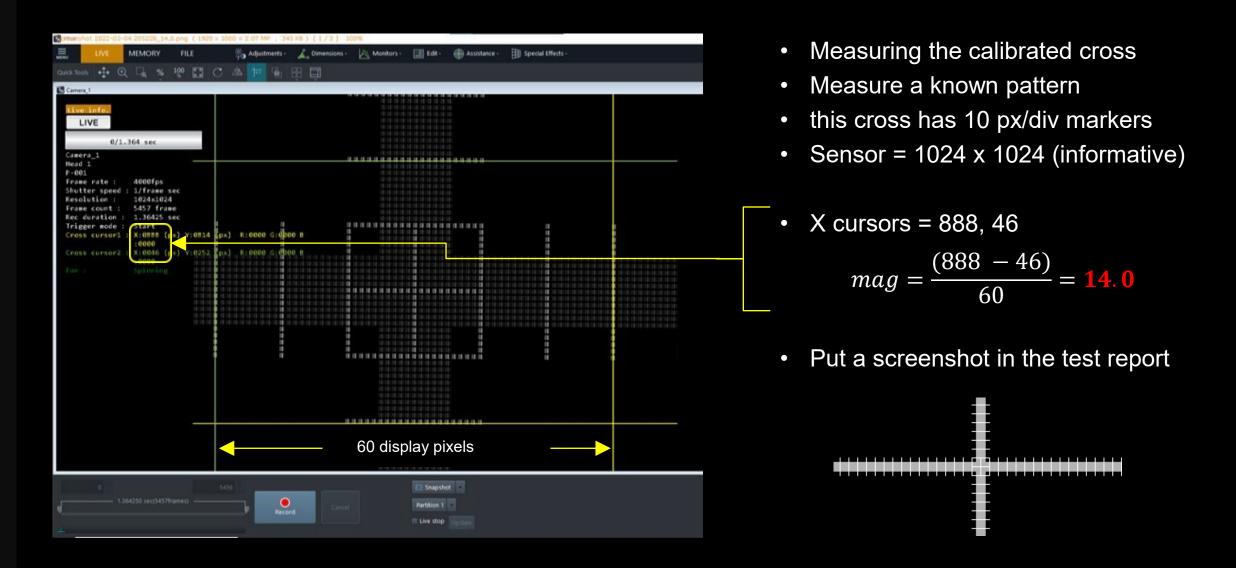
		This table calculates the user	This table calculates the user's camera magnification in use									
		Camera model	Camera model FASTCAM Mini AX series 500.00 ppcm									
	II IIZ IIS		Display parame	eters			Camera					
	0.312 0.35 m	Tuno	Diagonal	horizontal	vertical	panel pixel	sensor pixel	1:1 Sensor pixels /	Minimum			
1		Туре	Diagonai	resolution	resolution	density	density	display pixel	magnification*			
-	SIGMA		in	pixels	pixels	ppcm	ppcm	ratio	85.0%			
1	105mm 1:2.8 DG MACRO HSM	Monitor #1 ex	ample 27	1920	1080	32.122	500	15.566	13.23			
- 1	<i>i</i> .	Monitor #2 ex	ample 34	3840	1440	47.489	500	10.529	8.95			
2		Small laptop	13.3	2560	1600	89.363	500	5.595	4.76			
		Larger laptop	15.6	3840	2160	111.191	500	4.497	3.82			
Wanter of							•	•	•			

- Note the following attributes for later:
 - Capture Frame Rate
 - Sensor density

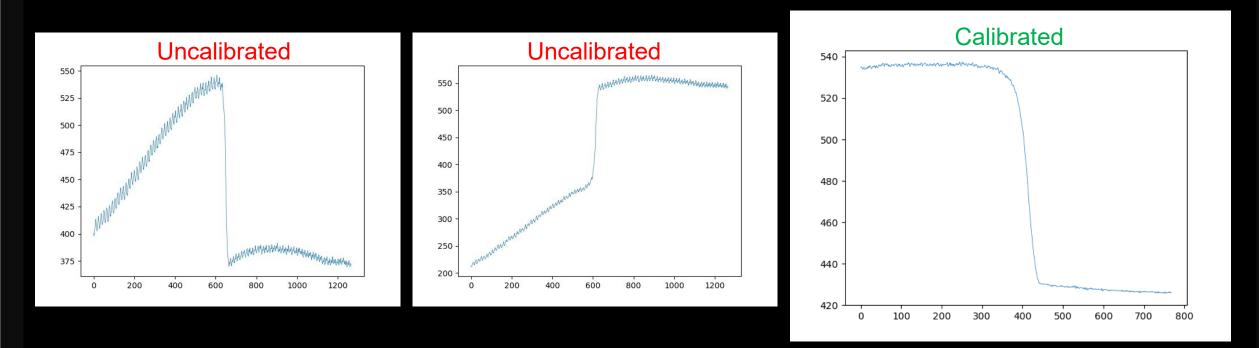
High Speed Camera : Align


Align monitor



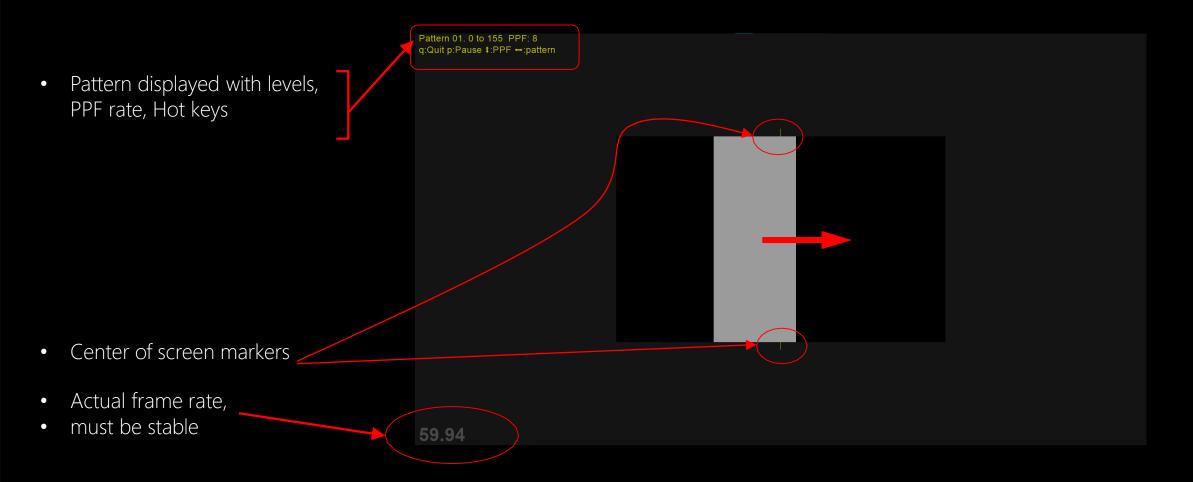

Align camera

- Fast Ethernet connection to the camera and...
- Use a good tripod with gear controls for easy alignment

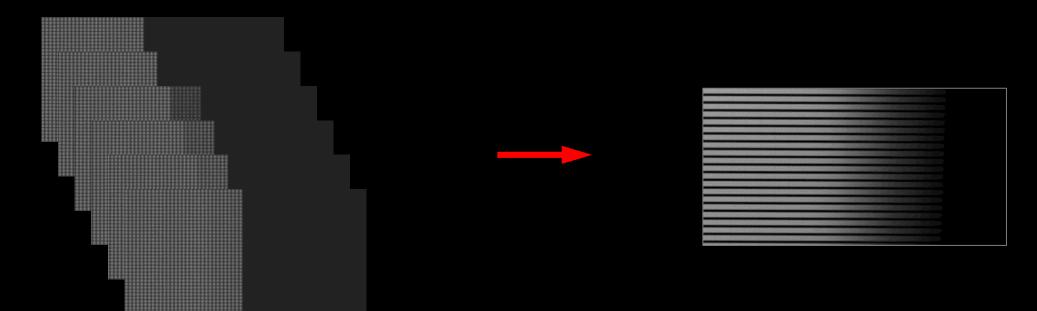


SAMSUNG DISPLAY

High Speed Camera : Camera Magnification


High Speed Camera : Calibration

Calibrate and set the black level of the camera after setup


Pattern Generator

- Generates test pattern at various PPF rates and luminance
- Still images used for camera alignment and magnification calculation
- Download from VESA (CMR Tools)

Frame stacking using "digital pursuit"

Record an image stack sequence

S/W combines into a blur image

CMR Analysis : overview

- A batch program with several functions
- [profile] creates a look-up table of image stack directories with all data required to find the clear motion ratio
- [blur] transforms multiple image stacks into blur profiles
- [cmr] build an analysis table of all blur profiles and statistics
- Usage is: cmr [OPTIONS] COMMMAND

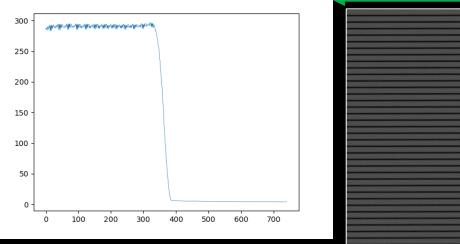
C:\demo>cmr_04.15.2022.exe --help Usage: cmr_04.15.2022.exe [OPTIONS] COMMAND [ARGS]...

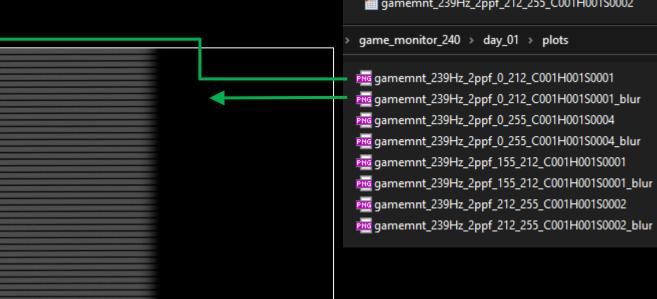
(c) 2020-2022 Samsung Display Co., Ltd. All Rights Reserved. CMR Analysis

ptions:	
version	Show the version and exit.
-v,verbose	
-p,ppf INTEGER	ppf override
hz FLOAT	monitor frame rate override
-s,scale FLOAT	camera magnifciation scale override
vres INTEGER	vertical resolution override
hres INTEGER	horiz resolution override
-c,camera_fps INTEGER	camera frame rate override
sensor_density FLOAT	Sensor density (px/cm)
diagonal FLOAT	Diagonal (inches)
ignore_mag	ignore check for scale within 85% of ideal
	magnification
-r,root_prefix PATH	[default: (C:\demo)]
-i,indir PATH	[default: (\$ROOT/profiles/)]
-o,outdir PATH	[default: (\$ROOT/plots/)]
-h,help	Show this message and exit.

Commands:

blur - calculate blur profile from images cmr - calculate cmr from profile profile - generate profiles/blur_params.csv


CMR Analysis : read in parameters [profile]


name	ppf	hz	scale	vres	hres	camera_fps	denSen	diagonal
gamemnt_239Hz_2ppf_0_212_C001H001S0001	2	239.76	13.5	1080	1920	10000	500	27
gamemnt_239Hz_2ppf_0_255_C001H001S0004	2	239.76	13.5	1080	1920	10000	500	27
gamemnt_239Hz_2ppf_155_212_C001H001S0001	2	239.76	13.5	1080	1920	10000	500	27
gamemnt_239Hz_2ppf_212_255_C001H001S0002	2	239.76	13.5	1080	1920	10000	500	27

name	Directory name of captured images
ppf	PPF (from pattern generator)
Hz	Display's refresh rate
scale	Camera magnification (from capture and measure)
vres	Display's vertical resolution (pixels)
hres	Display's horizontal resolution (pixels)
camera_fps	Camera's capture frame rate
denSen	Camera's sensor density (ppcm)
diagonal	Display's diagonal (inches)

CMR Analysis : [blur]

	<pre>\mb_data\game_monitor_240>cmr -r day_01 g day_01\profiles\blur_params.csv</pre>	. blur											
	name							diagonal		lvl1	lv12		
	gamemnt_239Hz_2ppf_0_212_C001H001S0001		239.76		1080		500	27		0			
	gamemnt_239Hz_2ppf_0_255_C001H00150004		239.76				500	27		0	255		⇒ game_monitor_240 ⇒ day_01 ⇒ profiles
	<pre>memnt_239Hz_2ppf_155_212_C001H001S0001 memnt 239Hz 2ppf 212 255 C001H001S0002</pre>		239.76 239.76		4000		500 500	27 27		155 212	212 255		guine_monitor_240 7 day_or 7 promes
D Be	ileiliitt_259H2_2pp1_212_255_c001H00150002	2	259.70	13.5	1080		500	21	1	212	255		
	ws x 12 columns]		(💀 blur_params
	nt_239Hz_2ppf_0_212_C001H001S0001: usin	lg 41	/ 50 fil	es					144 50	0.00.00	0.00	50 70i+/-1	
100%		a 11	/ 50 511	0.5			_	41	/41 [6	00:00<6	10:00,	59.76it/s]	🖬 blur_params-20210830_110411
100%	nt_239Hz_2ppf_0_255_C001H001S0004: usin	g 41	/ 50 TIL	25		_		41	/41 [6	0.0040	0.00	58.22it/s]	🔚 gamemnt_239Hz_2ppf_0_212_C001H001S0001
	nt 239Hz 2ppf 155 212 C001H001S0001: us	ing 4	1 / 50 f	iles					/ 41 [0		0.00,	50.2210,5]	
100%								41	/41 [6	00:00<0	0:00,	62.27it/s]	gamemnt_239Hz_2ppf_0_255_C001H001S0004
gamer	nt_239Hz_2ppf_212_255_C001H001S0002: us	ing 4	1 / 50 f	iles									
100%								41	/41 [0	00:00<0	0:00,	61.33it/s]	矕 gamemnt_239Hz_2ppf_155_212_C001H001S0001
													1 gamemnt_239Hz_2ppf_212_255_C001H001S0002
													gamening_cost ic_cppi_c ic_css_cooth too toooc
											•		> game monitor 240 → day 01 → plots

CMR Analysis : [cmr]

Trailing_0_255

Geo-mean CMR

average CMR

MR Score

avg max

label

NaN NaN

Both 7712.7699

ts 7712.7699

Leading 6754.0710

0.9250 1.5900

1.8500 3.1800

edge

average CMR Trailing 8807.5502

	3
_monitor_240\day_01>\\batch_processing\cmr_11.19.2021_1.23\cmr -r . cmr	
trying profiles\blur_params.csv	🖬 blur_params
name ppf hz scale vres denSen diagonal lpf lvl1 lvl2 Ø gamemnt 239Hz 2ppf 0 212 C001H001S0001 2 239.76 13.5 1080 500 27 0 0 212	🖬 blur_params-20210830_110411
gamemit 239Hz 2ppf 0 255 C001H00150004 2 239.76 13.5 1080 500 27 0 0 255	
2 gamennt_239Hz_2ppf_155_212_C001H001S0001 2 239.76 13.5 1080 500 27 0 155 212	🗖 detail
3 gamemnt_239Hz_2ppf_212_255_C001H001S0002	🔠 gamemnt_239Hz_2ppf_0_212_C001H001S0001
[4 rows x 12 columns]	懎 gamemnt_239Hz_2ppf_0_255_C001H001S0004
Individual CMR Details name label total distance denDis c m OS US cmr	Bamemnt_239Hz_2ppf_155_212_C001H001S0001
name label total_distance denDis c_m OS US cmr 0 gamemnt_239Hz_2ppf_0_212_C001H001S0001 Leading_212_0 44 32.1217 0.9915 1.8500 0.0000 9375.6890	
1 gamemnt_239Hz_2ppf_0_255_C001H001S0004 Trailing_0_255 48 32.1217 0.9925 0.2700 0.0000 8807.5502	🛅 gamemnt_239Hz_2ppf_212_255_C001H001S0002
2 gamemnt_239Hz_2ppf_155_212_C001H00150001 Leading_212_155 66 32.1217 0.9783 0.0000 0.0000 6105.0168	🖬 summary
3 gamemnt_239Hz_2ppf_212_255_C001H00150002 Leading_255_212 81 32.1217 0.9479 0.0000 3.1800 4781.5071	Summary
[4 rows x 12 columns]	
5.5.2 FAIL: samples test < 2 or > 10	i > game_monitor_240 > day_01 > plots
label size	
0 Leading_212_0 1	gamemnt_239Hz_2ppf_0_212_C001H001S0001
1 Leading 212 155 1	
2 Leading_255_212 1 3 Trailing_0_255 1	🔤 gamemnt_239Hz_2ppf_0_212_C001H001S0001_blur
Os/US sumary	gamemnt_239Hz_2ppf_0_212_C001H001S0001_OS_US
os us	gamemnt_239Hz_2ppf_0_212_C001H001S0001_profile
Leading_212_0_1.8500 NaN	
Leading_212_155 0.0000 0.0000	gamemnt_239Hz_2ppf_0_255_C001H001S0004
Leading_255_212 NaN 3.1800 Trailing A 255 NaN NaN	🚾 gamemnt_239Hz_2ppf_0_255_C001H001S0004_blur

SAMSUNG DISPLAY

⇒ game_monitor_240 ⇒ day_01 ⇒ profiles

memnt_239Hz_2ppf_0_255_C001H001S0004_OS_US

gamemnt_239Hz_2ppf_0_255_C001H001S0004_profile

gamemnt_239Hz_2ppf_155_212_C001H001S0001_blur

mgamemnt_239Hz_2ppf_155_212_C001H001S0001_OS_US

mgamemnt_239Hz_2ppf_155_212_C001H001S0001_profile

 gamemnt_239Hz_2ppf_212_255_C001H001S0002

 gamemnt_239Hz_2ppf_212_255_C001H001S0002_blur

1 gamemnt_239Hz_2ppf_212_255_C001H001S0002(LPF)_OS_US gamemnt_239Hz_2ppf_212_255_C001H001S0002(LPF)_profile ClearMR™

Conclusion

01 Problem statement

02 Clear Motion Ratio design

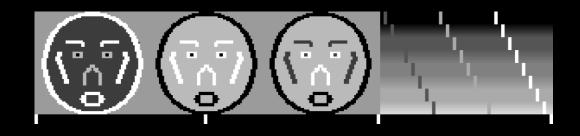

03 Setup for testing: Hardware and Software

04 Seeing is believing

ClearMR Tiers

VESA CERTIFIED

ClearMR	
ClearMR™ TIER	CMR RANGE
ClearMR 3000	··· 2500 ≤ CMR < 3500
ClearMR 4000	···· 3500 ≤ CMR < 4500
ClearMR 5000	•••• 4500 ≤ CMR < 5500
ClearMR 6000	•••• 5500 ≤ CMR < 6500
ClearMR 7000	•••• 6500 ≤ CMR < 7500
ClearMR 8000	···· 7500 ≤ CMR < 8500
ClearMR 9000	··· 8500 ≤ CMR < 9500
ClearMR 10000	··· 9500 ≤ CMR < 10500
ClearMR 11000	··· 10500 ≤ CMR < 11500
ClearMR 12000 · · · · · · · · ·	··· 11500 ≤ CMR < 12500
ClearMR 13000	••• 12500 ≤ CMR



*These tables may be extended in the future to certify faster products

Simulated results : Seeing is believing

- Ideal edges, $C_M = 1$, $r^2 = 1$
- Show on 2560 x 1440 display

* ambientCG images are 400 x 400 from York University, licensed under a Creative Commons BY 4.0 license)

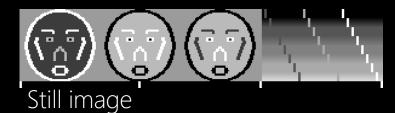
* Grayscale test pattern 300 x 70 © 2022 Samsung Display Co., Ltd. rights reserved.

Grayscale cartoons and diagonal bars

ClearMR 3000

ClearMR 4000

ClearMR 5000



ClearMR 7000

Summary

- Press release announcing the Clear Motion Ratio certification program and specification, www.vesa.org, Aug 22, 2022.
- Clear Motion Ratio captures all blur not 80% like other metrics
- Visually verified
- Sets a fair basis for comparison
 - Limits overdrive to eliminate ghosts
 - Eliminates strobing unless an intrinsic part of the panel design
- Backed by VESA, the key industry organization for IT Display Panel Quality and major OEMs who are certifying their displays today

Razor Sharp

Visit <u>www.clearmr.org</u> for the latest certifications and test details.

SAMSUNG DISPLAY

Thank you

Yongwoo Yi yongwoo.yi@samsung.com

SAMSUNG

SAMSUNG DISPLAY

VESA Compliance Program

Presented by Jim Choate and Sergey Grushin (Unigraf)

VESA PlugTest Events

- Provide significant value to member companies, particularly as new capabilities and products are deployed.
- Demonstrate and improve Traditional Interoperability
- Test Native DP and DP Alt Mode over USB Type-C products
 - UHBR20/13.5/10, DSC, FEC and other new capabilities
 - Verify Test Equipment Correlation (DP 2.1 LL CTS and PHY CTS)
- VESA hosted two successful PlugTests in 2022 (Taiwan and US)
- VESA will host two PlugTests in 2023
 - Taipei, Taiwan: October 2023 (Next week)
 - Burlingame, CA: May 2023 (done)

Product certifications 2022/2023

Products	2022	2023
DP Sources	141	99
DP Sinks	339	277
DP Cables	42	59
DisplayHDR	388	397
ClearMR	14	45
AdaptiveSync	25	80

DP 2.1 Link Layer CTS

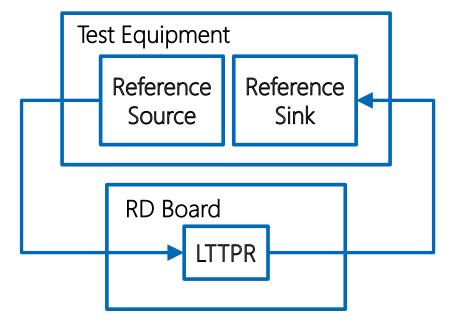
- Link Layer CTS is ready for release. Under final technical editor review.
- Sergey will cover details of new CTS and certification/test tools

DP 2.1 Link Layer CTS Update

Sergey Grushin Unigraf 9.10.2023

DP 2.1 vs DP 1.4a

- Sink and Source test procedures updated to comply with DP 2.1 requirements (Sections 4.2-4.4, 5.2-5.5)
 - UHBR link rates
 - AUX read interval
 - Take into account presence of LTTPRs
 - Video timings list revised
 - DSC timings list updated including 10K resolution timings
 - FEC aggregated error counters


DP 2.1 vs DP 1.4a (continued)

- DisplayID/EDID validation is now part of the DP 2.1 LL CTS (Sections 4.7, 5.7)
- Covers Adaptive-Sync validation (Sections 4.8, 5.8)
- Introduced tests to validate how Source device handles presence of LTTPRs on the link (Section 4.9)
- Introduced tests to validate Sink devices with embedded LTTPR (Section 5.9)

DP 2.1 vs DP 1.4a (continued)

• Introduced tests to validate LTTPR devices (Section 7)

DP 2.1 vs DP 1.4a (continued)

- Deprecated number of tests (EDID, AUX, Lane Count Reduction/Increase)
 - EDID tests (Sections 4.2, 5.2). Redundant with addition of DisplayID/EDID test sets (Section 4.7, 5.7)
 - AUX tests (Section 5.2). Implicitly tested by almost every Sink device test.
 - Lane Count Reduction/Increase (5.3.1.6, 5.3.1.7). Lane count change without Link Training is not required by DP 2.1 specification.

Planned Updates to DP 2.1 LL CTS

- Introduce MST test procedures
- Update Audio tests to DP 2.1 requirements including HBR audio testing (Sections 4.4.4, 5.4.4)
- Update Branch device tests to DP 2.1 requirements (Section 6)

Summary

Summary

- Product shipments and certifications on DP 2.1 based products continue to grow
- DisplayPort over USB-C is now the defacto standard for laptops, tablets and handheld devices
- Momentum continues to grow for DisplayHDR, ClearMR and VESA AdaptiveSync product certification
- Development and adoption of new technologies continues to drive increases in VESA membership growth

THANK YOU DisplayPort.org DisplayHDR.org VESA.org

Questions?